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ABSTRACT

We consider the goodness-of-fit approach for performing tests of significance about the kappa statistic. This approach was
suggested by Donner and Eliasziw (1992), who framed the parametric hypothesis testing problem about the kappa statistic
(leading to other associated small sample inference) as a multinomial goodness-of-fit testing problem, for which they proposed
the use of the Pearson’s chi-square statistic. Basu and Basu (1995) considered the use of some other members of the power
divergence family of Cressie and Read (1984) for this goodness-of-fit testing. However, when a specific alternative is of interest,
all the standard goodness-of-fit tests can be quite poor in comparison with the most powerful test within the above family; in
addition the asymptotic chi-square approximation for these statistics may be quite inadequate for small samples. In this paper
we present the results of a general investigation based on exact power computations which helps us to search for the most
powerful test for each sample size given the appropriate parameters, and identifies the randomized exact critical values. The
SPLUS code for the exact power computation is included in the appendix.
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Introduction

The kappa statistic introduced by Cohen (1960) is
widely used in medical, biological and psychiatric
studies for measuring agreement between two raters in
the presence or absence of a trait in individuals. Let
 Πo denote the probability that the two raters agree on a
randomly selected subject; under perfect agreement we
will get  Πo = 1. Suppose  Πe represents the probability
that the agreement between the two raters is by chance
alone. The kappa statistic, which is defined as

,

may then be interpreted as the excess observer
agreement over that expected by chance. The value of
the kappa statistic (henceforth κ) is bounded above by
1. Technically κ can fall below zero when  Πo is less
than  Πe. In most applications that is an inconceivable
situation and for our purpose we will consider
0 κ 1.

The popularity of the kappa statistic in applied
research as a measure of inter-rater agreement has led
to a significant amount of research on the asymptotic
properties of κ ; see, for example, Fleiss (1981) for the
large sample normal distribution of the sample measure

under multinomial sampling. However, the literature
related to small sample inference about κ is limited.
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Donner and Eliasziw (1992) discussed a method for
constructing accurate confidence limits and tests for
significance for κ in small samples based on the
Pearson’s chi-square statistic. Basu and Basu (1995)
compared the results based on the Pearson’s chi-square
with the likelihood ratio chi-square and another chi-
square measure proposed by Cressie and Read (1984).
Altaye, Donner, and Klar (2001) extended the
application of the goodness-of-fit testing approach of
Donner and Eliasziw (1992) to the case of binary
outcome data with multiple raters. Also see Klar et al.
(2000) and Gonin et al. (2000) for some alternative
approaches in the context of small sample inference
about κ.

In this paper we have restricted ourselves to the
simple – but widely realized in practice – scenario,
namely the problem of inter-rater agreement for two
raters in the context of a binary response. We attempt
to provide a comprehensive solution to the hypothesis
testing problem with the goodness-of-fit approach; in
particular we develop the codes in SPLUS which help
determine the exact most powerful goodness-of-fit test
against a specific alternative, as well as the small sample
critical values of the desired test. Thus when one wishes
to have high power against a specific alternative, one is
able to determine both the optimal test for the above
problem, as well as the critical values to perform that
test.

We propose to consider more complicated situations,
such as testing of hypothesis about κ in case of multi-
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rater agreement, in a sequel paper. In the process we
hope to extend the work of Altaye, Donner and Eliasziw
(2001), and Altaye, Donner, and Klar (2001).

In section 2 we have introduced the model under
which the hypothesis testing scenario is developed, and
the goodness-of-fit tests are introduced in section 3.
section 4 considers testing of hypothesis about κ,
introduces the exact tests and discusses the generation
of the exact power, and investigates various aspects of
the testing problem to gain further insight. The suggested
recipe, based on the codes developed is presented in
section 5, while section 6 has some concluding remarks.
We present the actual codes in the appendix.

The Model

Consider two raters who independently rate n
subjects on a binary scale, the ratings being either
success or failure. We will let π denote the probability
that the rating of the jth subject,  j = 1, 2, ...., n, by the
kth rater, k = 1, 2, is a success. Then the probabilities
for the joint responses can be expressed as a function
of π and κ as

Pr (both ratings are successes)

= π2 + π (1 – π) κ = EP1

Pr (one rating is success and one failure)
=  2π (1 – π)(1– κ) = EP2 (1)

Pr (both ratings are failures)
= (1 – π)2 + π (1 – π) κ = EP3

This is the common correlation model for
dichotomous data. Let n1, n2, and n3 represent,
respectively, the number of subjects rated as successes
by both raters, the number of subjects rated as successes
by exactly one rater, and the number of subjects rated
as failures by both raters, where n = n1 + n2 + n3. The
vector (n1, n2, n3) is the response vector. Under the
common correlation model the maximum likelihood
estimator of κ is

(2)

Where

(3)

is the maximum likelihood estimator of π.

Multinomial Goodness-of-fit tests

Suppose that (n1, ......, nκ) follow a multinomial
distribution on K cells with parameters n = n1+....+ nκ,
and probability vector π = (π1, π2, ....., πκ). The most
popular statistic for testing a simple or composite null

hypothesis about the probability vector π is the
Pearson’s chi-square

where OPi represents the observed proportion in the
ith cell and EPi denotes its expected proportion under
the null hypothesis. In the specific case of the common
correlation model of the kappa statistic the expected
proportions EPi are as in equation (1) with K = 3. The
expected proportions are replaced by the estimated
expected proportions under complex nulls which do not
completely specify the probability vector. Another
popular test statistic with the same asymptotic
distribution under the null hypothesis is the likelihood
ratio chi-square, defined by

The power divergence family of Cressie and Read
(1984), indexed by a parameter λ is defined as

(4)

See also Read and Cressie (1988). The Pearson’s
chi-square is recovered for λ = 1, while the likelihood
ratio chi-square corresponds to λ = 0 defined via the
continuous limit of the quantity in the right hand side of
(4) as  λ  → 0. Many other well known goodness of-fit
statistics – such as the Neyman’s modified chi-square
statistic, the modified log likelihood ratio statistic, and
the Freeman-Tukey statistic are also members of the
power divergence family for different values of λ. All
members of the power divergence family have
asymptotic chi-square distributions with K – 1 degrees
of freedom under the simple null hypothesis (where the
entire probability vector is specified). For complex nulls
the statistics all have the same asymptotic chi-square
distributions (under the null) with appropriate degrees
of freedom, when the unknown parameters are replaced
by first order efficient estimates in the expressions of
the expected frequencies. Some members of the power
divergence family have certain optimality properties
under some specific contexts; see Cressie and Read
(1984) for a discussion on the optimality of the
likelihood ratio chi-square in terms of the maximal
Bahadur efficiency, and the Pearson’s chi-square in
terms of maximum Pitman asymptotic relative efficiency
under certain conditions.

In the case of a symmetric null hypothesis (where
the probability of each cell equals 1/ K) the exact power
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these tests increase with λ  for a ‘bump’ alternative and
decrease with λ for a ‘dip’ alternative (see Cressie and
Read, 1984). A bump alternative violates the null
through a single cell with a large probability, while the
other cells have a common, smaller probability; the dip
alternative is the reverse. Even when one leaves aside
the question of systematically explaining such
phenomena, it demonstrates that the optimal test within
the Cressie-Read family for a particular null hypothesis
may depend on the specific nature of the alternative.

Testing Hypothesis about κκκκκ

One can frame the parametric hypothesis testing
problem

(5)
as a goodness-of-fit testing problem as follows.

Given the response vector (n1, n2, n3), one can compute
the estimated expected proportions EPi, i = 1, 2, 3, by
substituting κ0 for κ and  for π in (1). To be specific,
we will consider κ0 to be strictly between 0 and 1. The
test statistic for testing the null hypothesis about κ can
then be computed for any given value of λ using the
formula (4). Donner and Eliasziw (1992) had suggested

the use of (Pearson’s chi-square), while Basu and

Basu suggested that  can be a better statistic in
certain scenarios. It follows from standard asymptotic
results that all the test statistics are asymptotically
distributed as chi-squares with one degree of freedom.

Defining the statistics requires that the expected
probabilities be strictly positive. This fails when = 0
or  = 1 (i.e. when n = n1 or n = n3). In the exact small
sample calculations that we perform later, the powers
are therefore determined after conditioning on
0 < < 1. In practice this makes little difference since
here we only discard the two samples (n, 0, 0) and
(0, 0, n), whose probabilities are generally negligible,
even for fairly small sample sizes.

Randomized Tests of Exact Size ααααα

Given a sample size n and the null value κ0, we

determine the exact power of the test statistic at a
given level of significance  α and success probability π
at specific alternative values of κ as follows. First we
enumerate all possible samples (n1, n2, n3) with n1 + n2

+ n3 = n. There are  such samples in all. Having

enumerated them, we first discard the two samples
(n, 0, 0) and (0, 0, n) from the total pool of samples.
The probabilities for each remaining sample can then
be determined under the null using the probability vector

given by (1), conditioning on the reduced sample space
after discarding the above two samples. By sorting the
test statistics and cumulating their corresponding
probabilities over the samples we can easily find the
exact small sample critical value for this statistic at any
given α ; this is done by noting the point where the
cumulative probability crosses 1 – α . Because of the
discrete nature of the critical region we have to
randomize at the critical value to get tests of exact size
α . We then only need to recompute the probabilities
under the alternative value of κ to determine the power
of the test.

The range of λλλλλ values

Prior to any discussion that attempts to find a best
test within a certain class, we need to define the class
properly. In an absolute sense the power-divergence
statistics are indexed by  λ ∈(–∞, ∞). This interval is
clearly inconvenient to perform any search for an
optimal test, but can perhaps be reduced following the
observation of Cressie and Read (1984), who noted that
there is an evident “plateau” effect as |λ| increases in
that for large |λ| there is little change in power as λ
varies. All the well known chi-square goodness-of-fit
tests correspond to relatively small values of |λ|. There
are other problems for large |λ| statistics as well. The
chi-square approximation becomes poorer as |λ|
increases. The process of finding the exact power, which
requires complete enumeration of the sample space,
must end at a certain reasonable value of the sample
size. Beyond this, the exact power computation should
give way to the large sample chi-square approximation
which would hopefully be fairly accurate by that stage.
This becomes difficult for large values of |λ| which may
require extremely large sample sizes for the above to
hold. An additional complication is the presence of
empty cells. The observed values show up in the
denominator of the statistics for  λ < – 1, and because
of the presence of the empty cells the moments of the
test statistics do not exist for λ –1. While we can still
determine the exact powers and critical values for such
values of λ in the spirit of Cressie and Read, other
analysis which require moment calculations are not
possible with such statistics. As a compromise choice
we suggest the interval (–1, 1] for λ  over which to look
for an optimal test, although the SPLUS codes presented
here can be easily modified to perfrom the level α test
accurately for any value of λ, provided the critical value
for that (λ, α ) combination is finite.

For the rest of the paper, when we talk about
choosing the best test within the Cressie-Read family,
we will implicitly mean the tests within the Cressie-
Read family with λ restricted to (–1, 1].
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Use of the  critical values

Donner and Eliasziw (1992), who originally
suggested the goodness-of-fit approach for the κ testing
problem considered the Pearson’s chi-square test only,
and based their decisions on the asymptotic critical
values of the statistic which correspond to the quantiles
of a χ2 distribution with degrees of freedom 1. Basu
and Basu (1995) considered the exact computation of
power in the context of some specific members of the
Cressie-Read family. In actual calculations, the true
small sample critical values of any of these goodness
of-fit test statistics within the Cressie-Read family (4)
can be widely different from the χ2 critical values. In
table 1 we provide one example of the actual small
sample critical values for the χ2 goodness-of-fit test
statistics at different values of κ0 and for λ = 1, 0 and
– 0.5. The entries in the table give the exact critical
values for level α = 0.05, for sample sizes n = 20, 50
and 100. The numbers correspond to the true value of π
being equal to 0.25. For completeness we have included
the randomization probabilities (the probability of

rejection at the critical value) within parentheses as well.
The numbers demonstrate that the exact small sample
critical values can be quite far off from the appropriate
percentile of the χ2 distribution (in this case the 95th
percentile of a χ2 distribution with one degrees of
freedom equals 3.841). Although here we have only
presented the results for three values of χ, a more
detailed analysis (not presented here) reveals that
statistics with larger negative values of λ appear to be
further off from the chi-square approximation in small
samples. In the table, the numbers clearly get closer to
3.841 as the sample size increases, but is still not
completely adequate even for n = 100. However the
codes presented here will easily work for sample sizes
of, say, 200 or even higher for determining exact powers
and critical values. While n = 20 requires the
enumeration of 231 samples in all, n = 200 also requires
the enumeration of no more than 20301 samples, a
manageable task for a fast computer. Thus, whichever
test one wishes to do, one should use the exact critical
values determined by our codes at least upto sample
sizes of 100, perhaps even larger.

Table 1: Exact small sample critical values and randomization probabilities for some test statistics;
λ λ λ λ λ = 0.25.

Value of κκκκκ0

n λλλλλ 0.25 0.4 0.5 0.7 0.9

20 1 3.9216 4.0761 3.8948 4.3299 4.5885
(0.8778) (0.6044) (0.8041) (0.6270) (0.4826)

0 4.5741 4.5657 4.4483 4.8878 2.7431
(0.7906) (0.7454) (0.4119) (0.2452) (0.2906)

– 0.5 6.7429 5.3711 5.5898 8.0024 3.8893
(0.8701) (0.1904) (0.4275) (0.1753) (0.9235)

50 1 3.9175 3.8949 3.9512 3.8662 3.7933
(0.4910) (0.0929) (0.4247) (0.0002) (0.9841)

0 4.1037 4.1706 4.2605 4.1252 4.2503
(0.6213) (0.8183) (0.6070) (0.0501) (0.5791)

– 0.5 4.2454 4.1848 4.2550 4.3306 7.7953
(0.6475) (0.8884) (0.9217) (0.6780) (0.2208)

100 1 3.8769 3.9690 3.9542 3.9370 3.8429
(0.2904) (0.6590) (0.1613) (0.3083) (0.2475)

0 3.9703 3.9833 4.0966 4.0193 3.8396
(0.1732) (0.6964) (0.6996) (0.1914) (0.1701)

– 0.5 4.0455 4.1394 4.1455 4.0623 4.2722
(0.4265) (0.7786) (0.5093) (0.5758) (0.7344)

Goodness-of-fit Tests for the Kappa Statistic
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Comparison of Some Statistics for a Specific
Scenario

To give a flavor of the complex relationships
between the tests generated by the different values of
λ, we performed some analysis with exact power
computations which we present graphically in the
following. In figures 1–4 we present the power curves
for the testing problems H0 : κ = 0.25, 0.4, 0.5 and 0.7,
respectively, for test statistics corresponding to seven
different values of  λ (λ = 1,  2 / 3, 0.25, 0, – 0.25, – 0.5
and – 0.9). The nominal level is  α = 0.05 and the sample
size is n = 20. There is no drastic change in the
observations we describe below when the sample size
is different (say 25 or 50), so we have concentrated on
the sample size n = 20 to keep a clear focus in our
analysis. The exact powers of the statistics are computed
for π = 0.25 and graphically presented in the figures for
κ in (0, 1). The power curve figures lead to interesting
observations. No single power curve dominates all the
rest in either of the four figures. In fact a statistic which

In Figures 5–8, which again correspond to
H0 : κ = 0.25, 0.4, 0.5 and 0.7, respectively, we plot the
power functions from a different perspective. In each
of these graphs, we plot the power functions at five,
fixed, alternative values of κ (κ1 = 0.25, 0.4, 0.5, 0.7
and 0.9), but for all values of λ in (–1, 1]; the
computations are at the nominal level α =  0.05. On the
whole they confirm what we have observed in figures
1–4. For example, figure 5 reiterates that power is an
increasing function of λ at the alternatives κ1 = 0.4, 0.5,

0.7 and 0.9 when testing H0 :  κ =  0.25. Figure 8
confirms that power is an increasing function of λ at κ1
= 0.25, 0.4, 0.5, but a decreasing function at κ1 = 0.9
when testing H0 : κ = 0.7. The curves in figure 6 seem
have a general trend in either the upward or downward
direction although they are not monotone; Figure 5
appears to indicate that the powers at each of the
alternatives are higher for central values of λ. Thus
looking for a pattern in the power functions is very
difficult for the H0 : κ = 0.4 or H0 : κ = 0.5 cases.

Fig. 1: Power Curves for different values of λλλλλ for testing H0 : κ κ κ κ κ = 0.25

Basu et al.

is more powerful than another for an alternative on one
side of the null is generally (though not necessarily)
less powerful when the situation reverses. Almost all
the tests are biased, their power curves dipping below
the level of the test in the vicinity of the null. It appears
that for the case H0 : κ = 0.25, the tests corresponding
to large positive values of  λ perform better when the
alternative value of kappa exceeds the null. On the other
hand large negative values of λ are superior (although
marginally) in this case when the alternative is smaller
than the null. The situation, however, reverses when the
null value of kappa equals 0.7. Here large negative
values of λ provide more powerful tests for alternatives
larger than the null on the average, while large positive
values are preferred for the alternatives below the null.
For κ = 0.5 the situation is less clear cut, but closer to
the H0 : κ = 0.7 case. But for the case H0 : κ = 0.4,
general observations in the nature of the above do not
appear to hold.



82RASHI 1 (2) : (2016)

It is clear that it can lead to very weak inference
about κ if we choose a single, fixed, test statistic for
performing hypothesis tests about κ through the
goodness-of-fit approach. Figures 1–8 demonstrate that
for each of the null hypotheses considered here there
are certain alternatives where the use of the Pearson’s
chi-square will lead to disaster in terms of attained
power. For example if one is interested in testing
H0 : κ = 0.7, and if it is suspected that the true value of
κ is greater than the null value, the test based on 
will be practically powerless to detect the failure of the
null. This is not a specialty of the Pearsonian chi-square
alone; each individual test within the Cressie-Read
family appears to have its own pitfall at certain
alternatives when testing for any null value of κ. In short,
the choice of any single, specific test statistic will lead
to substantial loss of power at several (null, alternative)
combinations.

Thus one can clearly do better by choosing the test
as a function of the (null, alternative) combination. Yet,
there do not appear to be general guidelines for choosing
the most powerful statistic for a suspected alternative
at a given null value of κ. The message of the graphs in
figures 1–8 are sufficiently muddled; effective general
recommendations for choosing the most powerful test
at given (null, alternative) combinations based on the
above are difficult. Coupled with the variations which
arise due to the change in the sample size n and success
probability π (not presented here for brevity), it is

Fig. 2: Power Curves for different values of λλλλλ for testing H0 : κ κ κ κ κ = 0.4

virtually impossible to design a general rule to pick out
the most powerful test within the Cressie-Read family
for a given situation.
The computational route and the suggested recipe

We have observed that the asymptotic limit is
inadequate for the distribution of these test statistics in
small samples. Choosing the optimal test by observing
the patterns of the power functions appears to be
extremely difficult. However, with a fairly simple
computational effort, we can let the computer choose
the optimal test for us. In the appendix we have added
the SPLUS codes for the two programs we have used
for this purpose. The first program simply enumerates
all the samples given a particular sample size. The
second program calculates the power of the test for a
given null value, given value of the alternative, given
level α, and an underlying value of π. By simply running
the second program over a loop of a sequence of  λ
values one can construct the power curve as a function
of  λ at any (null, alternative) combination. In practise
π will be unknown, and in actual implementation, given
the response vector (n1, n2, n3), we will calculate , the
MLE of π, substitute that in the expression of the cell
probabilities given in (1), run the two programs
successively (the second one over a loop), and can come
up with a very good idea about the optimal test that will
generate the maximum power against a specified
alternative.

Goodness-of-fit Tests for the Kappa Statistic
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Fig. 3: Power Curves for different values of λλλλλ for testing H0 : κ κ κ κ κ = 0.5

Basu et al.

Fig. 4: Power Curves for different values of λλλλλ for testing H0 : κ κ κ κ κ = 0.7
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Fig. 5: Power curves for different κκκκκ1 (alternative values of κκκκκ) for testing H0 : κκκκκ = 0.25

Fig. 6: Power curves for different κκκκκ1 (alternative values of κκκκκ) for testing H0 : κ κ κ κ κ = 0.4

Goodness-of-fit Tests for the Kappa Statistic
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Fig. 7: Power curves for different κκκκκ1 (alternative values of κκκκκ) for testing H0 : κ κ κ κ κ = 0.5

Basu et al.

Fig. 8: Power curves for different κκκκκ1 (alternative values of κκκκκ) for testing H0 : κ κ κ κ κ = 0.7
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An Example

We present here an example extracted from Shoukri
(2004). Senior undergraduate students at the Ontario
Veterinary College were asked to identiy foals with
cervical vertebral malformation from x-rays. The x-rays
were classified as either affected or normal. Two
students (students A and B in Shoukri’s example;
pp. 49-50) classified 20 individual cases, and denoting
the affected cases as successes, the realized data vector
(n1, n2, n3) equals (10, 5, 5). This leads to estimated
values = 0.625 and = 0.467 for π and κ. We assume
π to be 0.625,  α to be 0.05, and want to test
H0 : κ = 0.4 so that we have the maximum possible
power at κ1 = 0.6. The most powerful test in this
scenario is generated by λ  around – 0.34, with the
corresponding power being 0.1567 at α = 0.05, where
the critical value and the randomization probabilities
are 4.0991 and 0.0832 respectively. A test with the
Pearsonian chi-square would only generate a power of
0.0794 with this combination of hypotheses.
Actual implementional leads to a failure to reject the
null hypothesis H0 : κ = 0.4 when testing with
λ = – 0.34; all the other tests fail to reject the null with

this data as well. For the same π and α, the   test
does, however, reject the null for the observed data
(10, 2, 8), but the Pearson’s chi-square as well as many
other tests within the Cressie-Read family fail to do
so.

6. Concluding Remarks

In this paper we have attempted to choose the
most powerful test for the kappa statistic at specific
alternatives by extending the previous goodness-of-
fit approaches. We have restricted ourselves to the
simplest case, but as this simple scenario is fairly
often encountered in practice we trust our methods
will be quite useful. For each combination of
parameter values the software provided helps to
generate the optimal test within the power divergence
family.

The following generalizations to this work are
necessary and would be useful, and we hope to
undertake them in the near future. Firstly, it is
necessary to extend this to the case of multi-rater
agreement, and to the case where the response is
categorical with more than two categories. Often such
response are ordinal, which adds another dimension
to this problem. It is relatively straightforward to
extend the approach of the present paper to some of
these scenarios, but can be quite nontrivial for some
of the others. The other problem that has to be
addressed is the development of compromise test
statistics which consider testing a null value of κ
against a composite alternative, and has reasonable
(not necessarily optimal) power at all (or most) of the
alternatives. This is another problem which we
propose to handle in the future by extending the
approach of Basu et al. (2001).
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Appendix
Program 1: This program enumerates all the samples
(n1; n2; n3) satisfying n1+n2+n3 = n
given a particular sample size n
# ********** Program 1 **********
# Two rater kappa with binomial response
# To generate multinomial sample
n_25
# n is the sample size
# (n+g-1) choose (g-1) is the number of ways in which n
objects
# —— cont —— can be divided into g groups
# Here number of groups is g=3
g_3
m_((n+2)*(n+1))/2
# m is the number of different samples in the sample
space
sample.vec_matrix(0,m,g)
# The sample vec matrix will store the different samples
along
# —— cont —— its rows
index_0
index1_0
repeat{#index1 loop starts
index2_0
repeat{#index2 loop starts
index3_0
repeat{#index3 loop starts
x_c(index1,index2,index3)
if(sum(x) == n)
{
index_index+1
#print(paste(index,”index”))
sample.vec[index,]_x
#print(x)
}
else if(sum(x) > n)
break
index3_index3 + 1
if(index3 > n) break
}#End of index3 loop
index2_index2 + 1
if(index2 > n)break
}#End of index2 loop
index1_index1+1
if(index1 > n)break
}#End of index1 loop
print(paste(“The number of groups g = “,g))
print(paste(“The sample size n = “,n))
print(paste(“number of samples m = “,m))
# ********** End Program 1 **********

Program 2: This program calculates the exact small
sample critical value and the randomization probability
for a given sample size n, success probability π, null
value κ0, and parameter index λ. The program also
calculates the exact small sample power at a given
alternative value of κ.
# ********** Program 2 **********
# Testing Program for the Kappa statistic
# Before running this file, run “sample.in” to
# —— cont —— generate the samples
n_25
g_3
p1_0.25
# p1 represents the pi parameter
alpha_0.05
# alpha represents the level of the test
alpha1_1-alpha
knull_0.90
kalt_0.50
lambda_0
# knull represents the null kappa parameter
# kalt represents the alternative kappa parameter
m_(n+2)*(n+1)/2
# Finding cell probabilities under the null
null.1_p1*p1+p1*(1-p1)*knull
null.2_2*p1*(1-p1)*(1-knull)
null.3_(1-p1)*(1-p1)+p1*(1-p1)*knull
null.vec_c(null.1,null.2,null.3)
# null.vec is the vector of cell probabilities under the
null
# Finding cell probabilities under the alternative
alt.1_p1*p1+p1*(1-p1)*kalt
alt.2_2*p1*(1-p1)*(1-kalt)
alt.3_(1-p1)*(1-p1)+p1*(1-p1)*kalt
alt.vec_c(alt.1,alt.2,alt.3)
# alt.vec is the vector of cell probabilities under the
alternative
sampnull.vec_rep(0,m)
# sampnull.vec stores the probabilities of the m samples
under the null
sampalt.vec_rep(0,m)
# sampalt.vec stores the probabilites of the m samples
under the alt
num_prod(c(1:n))
for(index in 1:m){
x_sample.vec[index,]
x[x==0]_1
den_prod(c(1:x[1])) * prod(c(1:x[2])) * prod(c(1:x[3]))
sampnull.vec[index]_(num/den)*prod (null.vec ^
sample.vec[index,])
sampalt.vec[index]_(num/den) *prod(alt.vec^ sample.
vec[index,])
}
mminus1_m-1
m1_m-2
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sample1.vec_sample.vec[2:mminus1,]
sampnull1.vec_sampnull.vec[2:mminus1]
sampnull1.vec_sampnull1.vec/(1-sampnull.vec[1]-
sampnull.vec[m])
sampalt1.vec_sampalt.vec[2:mminus1]
sampalt1.vec_sampalt1.vec/(1-sampalt.vec[1]-
sampalt.vec[m])
test.stat_rep(0,m1)
# sample1.vec, sampnull1.vec, sampalt1.vec are the
modificed vectors
# —— cont —— after removing the two samples for
which the mle of
# —— cont —— pi (pihat) is zero
for (index in 1:m1){
xx_sample1.vec[index,]
xx1_xx[xx>0]
# Calculating the estimated expected cell probabilities
under the
# —— cont —— null for this sample
# First need pihat (the mle of pi)
pihat_(2*xx[1]+xx[2])/(2*n)
nullest.1_pihat*pihat+pihat*(1-pihat)*knull
nullest.2_2*pihat*(1-pihat)*(1-knull)
nullest.3_(1-pihat)*(1-pihat)+pihat*(1-pihat)*knull
nullest.vec_c(nullest.1,nullest.2,nullest.3)
expt.vec_n*nullest.vec
# manipulating to handle observed zero frequency cells
ratio_sample1.vec[index,]/expt.vec
ratio1_ratio[ratio>0]
###########if(lambda==0)################
if(lambda==0){
test.stat[index]_2 * sum(xx1 * log(ratio1))
}
##########if(lambda==-1)####################
else if(lambda==-1){
if(length(ratio[ratio==0]) > 0) test.stat[index]_50000
else if (length(ratio[ratio==0]) == 0)
test.stat[index]_2 * sum(expt.vec * log(1/ratio))
}
#######if(lambda < -1)#############
else if (lambda < -1)
{
if(length(ratio[ratio==0]) > 0 ) test.stat[index]_50000
else if(length(ratio[ratio==0]) == 0 )
{
test.stat[index]_2 * sum((xx * (ratio^lambda -1)))
test.stat[index]_test.stat[index]/(lambda * (1+lambda))
}
}
#######if(lambda>-1 and < 0 )#################
else if(lambda > -1 && lambda < 0){
test.stat[index]_2*(sum((xx^(lambda+1))/expt. vec^

lambda)-n)
test.stat[index]_test.stat[index]/(lambda * (1+lambda))
}
#######if(lambda > 0 )#############
else if(lambda > 0){
test.stat[index]_2 * sum((xx * (ratio^lambda -1)))
test.stat[index]_test.stat[index]/(lambda * (1+lambda))
}
}#End of for loop
temp_cbind(test.stat,sampnull1.vec,sampalt1.vec)
temp_temp[sort.list(test.stat),]
cum.sampnull1.vec_cumsum(temp[,2])
cum.sampalt1.vec_cumsum(temp[,3])
temp_cbind(temp,cum.sampnull1.vec,cum.sampalt1.vec)
# Finding the small sample critical value and
# —— cont —— the randomization probability
tindex0_1
tindex1_1
tindex2_1
found_0
for (i in 1:m) {
if (temp[,4][i] > alpha1) found_1
if (found==1) tindex0_i
if (found==1) break}
found_0
for (i in tindex0:1) {
if (temp[,1][tindex0] - temp[,1][i] > 0.00001) found_1
if (found==1) tindex1_i
if (found==1) break}
found_0
for (i in tindex0:m) {
if (temp[,1][i] - temp[,1][tindex0] > 0.000001) found_1
if (found==1) tindex2_i-1
if (found==1) break}
print(paste(“tindex0 =”, tindex0, “ tindex1 = “, tindex1,
“ tindex2= “,tindex2))
a1_temp[,4][tindex1]
a2_temp[,4][tindex2]
b1_temp[,5][tindex1]
b2_temp[,5][tindex2]
crit.val_temp[,1][tindex2]
rand.prob_(alpha1-a1)/(a2-a1)
print(paste(“critical value = “,crit.val,”randomization
probability = “,rand.prob))
power_1-(b1+(b2-b1)*(alpha1-a1)/(a2-a1))
print(paste(“power = “,power))
print(paste(“Result for Complex Test for n=”,n,” pi
=”,p1))
print(paste(“Null Kappa knull = “,knull))
print(paste(“Alternative Kappa kalt = “,kalt))
print(paste(“Value of lambda = “,lambda))
# ********** End Program 2 **********
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