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ABSTRACT

From considerations of analytical simplicity of block designs we characterize the two important concepts of bal-
ance, namely, variance balance and efficiency balance, and discuss some properties and constructions of efficiency
balanced designs. We also discuss another interesting characterization of variance and efficiency balance of block

designs.

1. Introduction

The objective of the article is twofold: (i) to discuss
two characterizations of variance balance and efficiency
balance in block designs, specically to show (a) how
‘simplicity’ of analysis and ‘balance’ of a block design
are inter-related and (b) how a clear-cut and sounder
definition of eficiency balance, much different from what
is found in early literature, can be offered; (ii) to discuss
certain combinatorial properties and constructions of
efficiency balanced designs.

Consider a block design with the parameters (v, b, 7,
k), where, v is the number of treatments, b is the number
of blocks, = (r .+, ... ; r)" is the vector of replication
., k,)" is the
vector of block sizes. Denote the incidence matrix of
the block design by N = ((nij))v and let 7 be the vector

numbers of the treatments, and k= (k, k,, ..

xb

of treatment totals, and B be that of block totals. Then
the reduced normal equations for the treatment effects

T are given by

¢ =0,

where, C =7’ ~Nk°N', Q=T-Nk’B,
70 =Diag [#,7,,...,7 ]

k0=(k°)'=Diag [k, ,k; ...k, I,
and N is the transpose of N. The central problem of
the analysis of a block design is, thus, to get hold of a
g-inverse, say -, of C, that is, a matrix (- satisfying

CC™ C=C. Thus the C-matrix of a block design plays
a very important role in its analysis.

Calinski (1971) and some other authors have given
more importance to what is called the Mo-matrix of a
block design. In fact the very concept of efficiency
balance in most of the literature is intimately associated

with this A/ 0 -matrix. We shall, however, show in this
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article that we can forget about M|, and “balance” of

Jones [1959] and his unusual assumptions to interpret
the “loss of information” ( L), and still talk about the

eficiency balance of a block design on the basis of only
the C-matrix. Incidentally, throughout this paper, we
shall talk about connected designs only, for which rank

O)=v-1.
Tocher [1952] showed that C +r r /n is non-

singular, wheren= 17 =1 k,1 being the row vector
of all 1’s of appropriate size, and that the true inverse

of C+ I L' /n is a g-inverse of C. Thus

Q'=Ctrr'/n, where C QC=C.

Now

0" =#°[1 = Mo],where Mo=r Nk ™®1r' /n.

Calinski [1971] has shown that

Q=[1,-M,]"'r° = {IV + ZMg}-ﬁ
h=1

which reduces to a very simple form for, what he called,
totally balanced designs, or, efficiency balanced designs
(EBD). In fact, from the following current denition of
EBD, Calinski [1971] observes that a block design is
an EBD if and only if

My=u[l,—1r /n],0<pu<l.

Ablock design is efficiency balanced if and only if,
for every treatment contrast vector s, (Note that this is

an observational contrast so that § ' r=0.

M s = us, for somereal |, 0< L <I,



EB in block designs

where L is the unique non-zero eigenvalue of Af 0
It is easy to see that for an EBD,

Q=[(1-p) 'L, +p(-p) "' 1r /0]~
and hence for every (parametric) contrast )'r ,

VIAT)=A0QAc> =(1-p)'Ar?ic’
Therefore, the relative information gained on &E ,
(compared to an orthogonal design), or efficiency on
AT, is

Araci(l—p) ' Ar A’ =(1-p).
Hence the name “efficiency balanced” designs for the
above class of block design.

We end this section by recalling the definition of
variance balance which considers only the parametric
contrasts and not observational contrasts.

Ablock design is variance balanced (VB) ifand only
if V (/IE )/ ') is a constant for all (parametric)
contrast vactors }, :

2. Two Characterizations

2.1 The results of this sub-section are from Sinha
and Saha [1985]. Although they are true for a general
block design, we shall consider only the connected design
version, as pointed out in the previous section.

Parallel to and consistent with Definition 2, we define
an efficiency balanced design as follows. And we shall
use this denition in all the results of this section.

A block design is efficiency balanced if and only if
Ar AV (&ﬁ) is a constant for all (parametric)
contrast vectors ) .

(Note: For#=r- 1, Denition 1 and Denition 2 are
equivalent.)

We shall now see how the analytical simplicity of a
block design and its variance balance or efficiency

balance are inter-related. If ("~ of a block design can

be obtained easily and immediately without any
computer assistance, then the design can be called a
“simple” (to analyze) design. While commenting on
“simplicity” of a block design in an age of computers,
Calinski [1971] remarks that ‘simplicity’ is usually
accompanied with elements of “balance” of the design.
It is clear that balanced designs are “simple.” We ask:
are “simple” designs balanced? The answer is yes. For

RASHI 1 (1) : (2016)

example,
i) C ol , < variance balance (Definition 1);
(i) C~ oc =% « eficiency balance (Definition 2).
Thus, the analytical simplicity of certain types
characterize the variance balance and efficiency balance
of a block design. From this characterization it is now
easy to characterize the C-matrix of a VB and EB design
and arrive at the results of Rao [1958], Kageyama [1974],

Calinski [1971] etc., on such designs. In fact, it can be
proved that

1)V ( &'EA )/ A'A constant for all A such that A'1=0
ifand only if C~ oc [

if and only if C~ oc[1, —v™'Jwv],
where Juuis a v x v matrix of all ones;
(i) A'» 91/ A'C~ A =constant for all A suchthat A'1 =0
ifand only if ¢~ oc ¢
ifand only if C [r®—r 1’ / n]
if and only if M, oc[I, — 17 /n].

Thus we obtain here a simple and straightforward
characterization of efficiency balanced design based on
a neat and clear-cut definition of EBD (Def.2).

2.2 Jones [1959] considered a diffierent characteri-
zation of what is today called EBD. Instead of consid-
ering parametric contrasts, he considers observational
contrasts and their intra- and inter- block components.

sT, where s 7 =0, is called a treatment contrast.
Now,
sT=sQ+sNk’B

= intra — blockcomp. + inter — blockcomp.,
where

Cov(s'Q,s Nk™°B)=0
Thus the two components are mutually orthogonal

observational contrasts. Let$, and S, be two mutually

orthogonal treatment contrast vectors, that is,
s,;r=s5,r=0=571,.
When will Cov( s, O, 5, Q) be zero? Jones [1959]

came up with the following answer:

, . b
COV( Sl Q’ Sg Q ) = 0<:> Zniunju /ku OC}';_}"].

u=1



foralli,jii# j=1;2;..;v:
The right hand side is again equivalent to (See Puri &
Nigram [1977].)

C=(1-wI[r’-rr'/n],
where U is some real constant, 0 < [ < 1. Thus the in-
tra-block components of orthogonal treatment contrasts
are orthogonal for EBD, and only EBD.

A similar characterization for variance balanced
design can be obtained. One can really establish that:

Cov (A'T,m'1 )=0,for all A, msuch that \,'m =0
=A1=m1l
< C oclv
&> the design is variance balanced.
Thus BLUE’s of orthogonal treatment contrasts are
also orthogonal if and only if the design is variance
balanced. The result is true for disconnected designs as

well. Below we given an outline of the proof for the
general case.

Since Cov (A'T,m7) A C mo’

q CC Cpo? for some P and ¢, the given condition
of zero covariances is equivalent to ¢ 'Cp =0, for all p,
q such that qYC : P = 0" Again this is equivalent to

Coc C%ie., C=C (0! )C for some constant . Hence
the result.
3. Some properties of EB designs

Kageyama [1980] has shown several interesting
properties of efficiency balanced designs. They can be
classified into the following four categories:

(@)

inequalities (or upper and lower bounds, as they
are popularly called) involving the constants,
v,b,r, k}.and u;

(i1) necessary conditions for the existence of EB
designs;

(iii) results on the number of disjoint blocks of
symmetric (v = b) binary EB designs;

(iv) results on dual of an EB design.

For details a reference may be made to the lengthy
paper of Kageyama [1980].

Saha [1976] established that the dual of an EB design
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is a C-design, i.e., a block design satisfying MO2 =uM,,

0 <p< 1. Kageyama [1980] also made the same
observation.

Puri and Nigam [1975] had shown that if N, is the

N, ,where

incidence matrix of an EB design, then so is N,

N" is obtained from N by adding the first a, rows, then
next a,rows, ..., up to the last @ rows of N, where a,+a,+
+a=v.

We close this section with some observations on the
bounds of Kageyama [1980] on 7, and [ of an EB
design. He has shown that for a binary EB design,

n—(minr)(maxk,;)(maxk,)(n-minr,)
i J ‘ J i

Su<n-(maxr)(mink,)mink, )(n-maxr)
i Jj ' Jj ' i
3.1)
and
nl—p(maxk; — u) <r, <nl—p(lmink, — p)
J J

(3.2)
Now from the C-matrix of an EB design, given by

C=(1—w)[r® —r rml, (3.3)
we have, on comparing the diagonal elements of both
the sides,

b
p=(2m/=k— rmr=rn, (3.4)
from which we can write
w=[nY. 3 n2 'k, —all[n*-al, a= 27/ (3.5)

Clearly then, if the design is binary, i.e., if ni/.=0 orl,

W= [nb—al/[n’—dl, (3.6)

as observed by Kageyama [1980], also. When an exact
relation is known an inequality ceases to have a mean-
ing. It is for this reason that (3.1) is useless in view of
(3.6).

Again, from (3.4) we can find an upper bound for ri,
not involving [l and hence quick-to-apply, which may
be preferable to that of (3.2). Since 0 < L1 < 1, we have
from (3.4):

;;2n<Zn;kj<1;.,i=1,2,...,v. 3.7)
- .

Therefore, for binary EB design

rin< Y mk, <31k,
J j
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1
and hence i < nz_
J kj

Utilizing the other half of the inequality (3.7), namely

b
2
r>ynlk,
j=1

which incidentally is true not only for an EB design, but
also for a general block design, we can write

2> 2 mk,
i i

(3.8)

that is,

n>ZZn;kj Z(Zankj)z/(ZZij). (3.9)

From thils inequalitiy,]it follows thatj

n>b’ /(lekj),orZij >b’nv (3.10)
J J

an inequality involving the parameters of a general block
design.

Finally, we give a lower bound for U for any EB

design (not assumed to be binary only). From (3.5), (3.9)
and (3.10) it follows

u> (nzf(vzjjlk,.)—a)n2 ~a (.11)

We end with a note on upper bounds of 4 in EB
design. A well-known lower bound for the number of
blocks of EB design is

b>v (3.12)

(Kageyama [1980]. From (3.10), we have an upper

bound for b :
b< [ Ik,
J

Again substituting for t from (3.6) in U of (3.11),
we have for binary EB design

b<v) 1k,
J

(3.13)

(3.14)

4. Constructions of EB designs

There is really no theory for the construction of
efficiency balanced designs. In literature there exist some
discrete methods of construction of such designs.
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Saha [1976] constructed an EB design by adding a
new treatment suitably to a BIBD along with its
complementary design with parameters satisfying a
certain relation. Kulshreshtha et al. [1972], and Hedayat
and Federer [1974] gave a method, called “method of
unionizing” of construction of variance balanced designs.
Later, Puri and Nigam [1977] generalized this method
for the construction of efficiency balanced designs.

Recently, Kageyama [1981] considered the
construction of binary EB designs. Basically, he
generalized Puri and Nigam’s [1977] method in various
directions and constructed a large number of binary EB
designs. For details of the interesting constructional
results a reference may be made to the paper of
Kageyama [1981].
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