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ABSTRACT

We propose an estimator of the smallest location of two negative exponential populations. The proposed estimator is
compared with the existing maximum likelihood estimator through different performance criteria. In support of these com-

parisons, we also provide some numerical computations.
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1. Introduction

Estimation of the smallest (largest) location of sev-
eral exponential populations has always been an inter-
esting problem. The problem of estimating the largest
mean of K normal populations was considered by Kuo
and Mukhopadhyay (1990), Mukhopadhyay et a/ (1993),
Saxena and Tong (1969) and Tong (1970), among oth-
ers. A related problem of estimating the largest compo-
nent of a multinomial parameter has recently been con-
sidered by Alam and Feng (1997). Kuo and
Mukhopadhyay (1990a) considered the point estimation
problem of the largest location of K negative exponen-
tial populations. But, most of these works are for fixed-
width interval estimation based on sequential or multi-
stage sampling.

In this paper, we consider the point estimation of the
smallest location of two negative exponential populations
in the face of unknown scale parameter(s). In the lan-
guage of reliability and life testing, this amounts to the
estimation of the minimum guarantee time when the as-
sumed distributions are all exponentials with unknown
failure rate(s). The exponential distribution has been
widely used for describing the distribution of failure
times of complex equipment, vacuum tubes and other
small components. Applications of simple exponential
models are concerned with animal tumour systems and
acute leukaemia, destruction of tumour cells with laser
energy, and the analysis of survival data with concomitant
information. One can see Zelen (1996) in this context.

Let E(n, 0),i=1,2. be two independent negative ex-
ponential populations and (X, ,..., X, ) be a sample from
the i"™ population. Our objective is to estimate
9:p(|)=min(pl, u,). First, we consider the case of equal
scale parameter, i.e.c,=0,=0, say. We propose an esti-
mator of 6 with a slight modification over the existing
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maximum likelihood (ML) estimator in section 3. The
suggested estimator may be useful to estimate the mini-
mum guarantee time of a series system comprising of
two components having independent exponential life dis-
tributions. In section 4, the proposed estimator is com-
pared with the ML estimator both asymptotically, and
also in terms of their small sample performance. Next,
in section 5, we consider the case of unequal scale pa-
rameters. Some numerical computations for the case of
equal scale parameter are also provided to justify our
findings.

2. Basic Distributions

Since life-time is non-negative, it is quite reason-
able to assume p >0, i=1,2. Also >0, Xi,->”iVj:1
(Dni=1,2, Let

Y,=min{X,, J=1()n}, 2.1)
SEXL(X, 1), i=1.2
and Y = minﬂ/,Yg).
It is well-known that
Y ~E (.27, >, i=1,2 . Q2)

25,
=il x ,
o 2(ni-1) }

and the variables are all independent.

Now the distribution function (d.f.) of Y; is given by

i
F(y) =1-exp [—@} ity >p,
0
ify <p,i=1,2
If G(y) is the d.f. of Y then, using (2.3), we get

(2.3)
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1-G() =TIP(Y > y)
1 ifyS,u(l)

n (=) .
= exp{—T’} ifp,<y<p,

exp[—éz‘iln,(y—ﬂ.)} ify>p, .24
where

M= min (p,p) < p, = max (p,p,)

and n® is the sample size corresponding to the
population having location =12, Clearly

)= = =
n=n when M= M, i 1,2
Let
N=n+n,= n+n®

and
_ 1 2 1 2
_ _ @)
M= NZ[:lni‘ui - Nz,'=1n ‘u(i)

Uy is usually estimated by

T=min (l,, [L,) .. (2.5)

where /:ti is an estimator of (1. If fii =Y, the maxi-
mum likelihood (ML) estimator of U, , we get
T =min(Y,,Y,) =Y, which is the ML estimator of
My - Let us denote this estimator by T, .

3. Proposed Estimator
In this section we propose an estimator which re-

duces the bias in 7}, . The bias and mean square error

(MSE) of T}, can be easily obtained as

O o O _
Bias (TM):W(I—e ! )+Ne 6D

2

20 I 20 _
ABEU@%=17+6“[uz—u&+77uuﬁ+D
n
1 1 2
+cr2[—— ,j{,u*ﬂ +1;
N? n® ( )

(1)
2o, (453

..(3.2)

where
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*_ n(l)(#(z) _:u(l)) _ N(/J(Z) )
K (o} (o}

(3.3)

We see that Bias (T,,) > 0, and hence T, overesti-

mates U . To reduce the bias, we propose the follow-

ing modified estimator

. c
r=r-—5 .. (34)
where
R 1
6=—-—(8+5,

and

AV =n it Y=Y,i=12.

. . A A(l
Since S; and Y, are independent, & and ;") are

also independent. Hence

EU*):EUO—EnﬂE{AéJ

..(3.5
p (3.5)
Here
E(6)=0,E ! =3y iP(Y—Y)
6)=0, A1) i=1 i i)
where
2)
1776" o =
PY=Y)=1-P(Y=Y,)= , L Ho T H
ﬁe’“" if ﬂ(l)—uz}"'(3'6)
N
Then it can be shown that
1 1 1 .
RN
7 20N (3.7)
where
B n(Z)
P="0
Thus,
i 1 1 B
E(T):y(l)+ o +oe (N W) ‘:“)+—e (l—p)}
_ O
B (3.8)
implying that



* O *
Bias|T |=——¢e™" <0, . (39
(7)=-% (3.9)
and thus 7"* underestimates H

Now to find the MSE of 7" *, we see that

A ~ 2
o | _ _i 2
r-gi)-elr-35) -20)

:E(Y2)+E(C}2)E(%)*ZGE(%)*EZ(T*)' . (3.10)

n

E(Y’)and E (c'} 2 ) can be easily obtained by us-

ing the distribution of Yand & . Also, after simple ma-

nipulations, we get

(1) ¢
Ekﬁri_l%f’(hm

B n® (11
n(l)z 7 n(z)z _n(_l)z (311)
and
Y Y
el )= el i)
L (v
=ZEL—’JP(Y=Yl)
i=1 n;

20 . 20 (. 1
g ()
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4. Comparisons

4.1. Small Sample Comparisons
Since |Bias(T,, )| ~|Bias(T")| = %(1 ~¢*)> 0,7 has
smaller absolute bias than that of 7, i.e. 7" is closer

to K than 7),. This fact, however, can be proved by

using Pitman’s closeness property which says:

An estimator T'is closer to @ than another estimator

T if

PQUT—9|<\T'—9H>%

(4.1)
In our case
c .
T:Y—W,T = Y
and
0= L,
Thus

A

. (o)
|T—0|<‘T —Q‘QY—W>H(1)- .. (42)

Now, after some routine steps, it can be shown that

o

~or(z<a)s( ) {(l ~0)+0e Pz cz)} 43
where

n®
v=2N-4,0=——e
© N

45 (N - 2)(.“(2) - .u(z))

=
(o)
. (4.4)
2N -3 e ko)
-
(o)

Note that ¢, = TCZ . It is easy to verify that, for N>2

+1

()~
—_— >7
v+1 2

(4.5)
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Since

let

w(x)=P)X> <x)+ [L] ’ e”/ZVP(Xf ,r+l )
v+1 v .

.. (4.6)

which can be written as

w(x):l—P[U>x,V< U_x]
\4

where
U~ .
and

vV~ )é independently.

. 2
Now, since x > () and —g ~ Fv 5, We get

vV
w(x)=1-P[U—-VvV > x|
>1-P[U-vV >0]

=P|F,,<2]

= — . %))
v+1

(4.5) and (4.7) imply that
1
P> ) ... (4.8)

and hence T* is Pitman closer than 7, Y

The MSE of T, is not easy to compare algebrai-

cally with that of 7" . We shall, however, consider some
asymptotic and numerical comparisons in the later sec-
tions.

4.2. Asymptotic Comparisons
It can be easily seen that Bias(T,,), Bias(T"), MSE(T,)

and MSE(T*) all tend to zero as N —» oo, Hence T*

and T, )y are consistent. Also, we see that

lim, ,, [N|Bias(TM)|]=% . (49)
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where

08}
) n
AV =1im

N—ow

and that

lim, .| N|Bias(T")|] = 0. .. (4.10)

Again, as N — o,

2

N? {MSE(T,, ) - MSE(T")} ——

P10 .. (A1)

(4.9) and (4.10) imply

lim, [N{\Bias(TM)\ - \Bias(T*)\H = % .(4.12)

(4.11) and (4.12) mean that 7™ is at least asymptoti-

cally a better estimator of L, than T,.

5. Case of Unequal Scale

Here we consider the estimators
&M

T,=Y andT*=Y—W,

where

V=6 =

S Y=Y,i=12.

i
n -1

Then, as in the case of equal scale, we see that

0] . , T
BiaS(TM):%(l—e’“){Zi:l;m\ >0 (5.0)
(<2 n? B
Bias(T —1 e" <0
( ) izla(z)J .. (52)

() Sl
w 0"
a1 +Lzzl%)



E—

where
G(i) — Gi if ‘u(l) = #i’i: 1,2
_ n (:“(2> - ”(l))
and g =——7GH— .
c
Here
(1)
|Bzas(T )| ‘Blas(T )‘ (])( l—e™
and
A(1)
c
=PDY‘“<1)‘> Y‘W‘“ﬂ)}
A1)
lo}
=PI Y=

i
2

-

(v )2 i (v )
i) (I_Q)J“Q{P(Xw“l) S

where

¢, =
2 2
o v,
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(2” _1)(/4(2) - /“l(l)) W +lc

1

.(5.4)

)>0,

eﬁP()(i >c, )}

..(5.5)

...(5.6)
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As in section 4.1, it can be similarly shown that P>

2
and hence 77* is Pitman closer than7), Again,
o
lim {N(‘Bias ‘— ‘Bl(lS(T )D} 1
N—oo /’L( )
and

2
o®

lim | N* { MSE(T,, ) - MSE(T")} | = ~o

N—ox

implying that 7% is also asymptotically better
than 7,

6. Numerical Results

Here we write

B, = Bias(T,,), B, = Bias(T")

M, =MSE(T ), M, = MSE(T").

From the table 6.1, we observe that :

(i) Both Bias( ) and Bias (T *) decrease with

the increase in sample sizes, and increase with the in-
crease in O, as is evident from their theoretical expres-
sions.

(ii) The mean square errors, too, decrease with the
increase in sample sizes, and increase with the increase
in O.

(ii1) As has been already algebraically established
Bias(T*) is always less than Bias(T,,) absolutely. But
what is more important is that MSE(T*) is less than
MSE(T,)

7. Concluding Remarks

Comparison of the proposed estimator with another

existing estimator 7;, = min, = 1’2{)71, —G} is left
n,

i

undone because as in the case of proposed estimator or
the ML estimator, we cannot have exact mathematical
expressions for the performance criteria of 7. However,
we can get a fair idea of the performance of 7* over T,
through simulation studies. The case of equal sample
sizes follows easily from the above study as a particular
case.
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Table 6.1: Calculations of B,,B,,M, and M, based on 10,000 simulations

(nl’nZ) c (Hy5 15) /J* |Bl| |BZ| M, M,
(10,12) 1 (1,1.5) 5 0.0996 0.0003 0.0195 0.0102
(1.5,2.5) 10 0.01 2.06x 10 0.01999 0.01049
(2,1) 12 0.083 2.79 x107 0.013885 0.007287
1.5 (1,1.5) 3.33 0.147 2.44 x 1072 0.0408 0.01713
(1.5,2.5) 6.67 0.15 8.65 x 107 0.0447 0.0232
2,1 8 0.125 2.29 x 107 0.0296 0.0148
2 (1,1.5) 2.5 0.191 0.00746 0.0658 0.0209
(1.5,2.5) 5 0.199 0.0006 0.0781 0.0389
2, 6 0.166 0.0002 0.0432 0.0173
1 (1,1.5) 10 0.05 1.01 x 10 0.004999 0.00256
(1.5,2.5) 20 0.05 4,58 x 10! 0.005 0.00256
2,1 25 0.04 3.09 x 1012 0.0032 0.0016
1.5 (1,1.5) 6.67 0.0749 42 % 107 0.0112 0.00565
(1.5,2.5) 13.33 0.075 5x 107 0.01125 0.00576
(20,25) 2,1 16.67 0.06 1.9x 10° 0.0072 0.0037
2 (1,1.5) 5 0.0996 2.99 x 10+ 0.0195 0.00946
(1.5,2.5) 10 0.01 2.01 x 10-¢ 0.01999 0.0102
2,1 12.5 0.08 1.66 x 107 0.01278 0.0065
(1,1.5) 2 0.2312 0.015 0.0926 0.0182
5 (1.5,2.5) 4 0.002 0.002 0.118 0.0532
2,1 5 0.00075 0.00075 0.0465 0.0088
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