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ABSTRACT

Symbolic direct product of matrices has been applied to the incidence matrices of block designs to define the symbolic direct
product designs. The properties of the derived design have been studied to see how the properties of the component designs

are carried into the new design.
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1. Introduction :

The method of symbolic direct product of matrices
was first used by Chakravorti (1956) to generate
orthogonal asymmetrical fractional factorial plans from
known solution of orthogonal plan of symmetrical fac-
torial designs. Raktoe, Hedayat and Federer (1981 page
187) termed it direct product. Here we have used the
nomenclature symbolic direct product (SDP) to distin-
guish it from the ordinary direct product of matrices.
New designs have been formed by using the operation
of SDP to the incidence matrices of two designs. In
Section 2 we have given the analysis of the derived de-
sign and have shown how the C-matrix of the derived
design is related to those of the component designs. We
have exploited these relationships to study the optimality
of the derived designs in section 4. In section 3, some
combinatorial aspects of these derived designs have been
studied.

Let us give the definitions.
Definition — 1.1

LetA=(a,a,..,a)and B=(b,b, ... b)be
respectivelym x nandp x qmatrices. Then the sym-
bolic direct product A ® B of order (m + p) x nq of
the matrices A and B is defined by

a a,....a, 4,....4,....a_....a

A ® B — 1 1 1 =2 2 n n

b, b,..b,b..b,..b, ..b

n

Definition 1.2 :
vixby _ Voxby _
Let Nl =(n,n, .., Oy, ) and N2 =

(m

» M, me ) be the incidence matrices of two
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designs d, and d, respectively. Then the design d whose
incidence matrix N is given by N ® N, is called the
Symbolic Direct Product Design (SDPD) of d, and d,.
It is clear from the definition that the symbolic
direct product design d of the designs d, and d, is ob-
tained by taking the treatments of every block of d, into
every block of d . Again if the b, columns of N, are
assumed to give a fractional design of a v-factor experi-

ment i = 1, 2, in a single block then d is Kronecker
product design (Vartak, 1955) of the fractional designs.

It may be seen that if the vectors in A @ B be scalars,

then we get the SDP in the sense of Kurkjian and Zelen
(1962).

2. Analysis of the Symbolic Direct Product Design :

Let d be a binary design with the parameters v, b, 1,

k and 15/') ,i=1,2. Then the designd=d, ® d, has the

following parameters.

v=v,+v,, b=bb,

k=k +k
r,, = replication of any treatment t j, ofd =b,r
r,, = replication of any treatment ty j,ofd,=br,
k(j? = replication of any treatment t; jand t jof
d,=b,3 (1)
1T i
A2) _ replication of any t triand tyy
i T replication of any treatment t2jand 12
= 2
A jj’ = replication of any treatment tlj of d, and

@.1)

tyofd,=r 1,
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Let C)1™" =byr] —KflszlNi,
VyXVy -1 !
C3;™" =brl,—K bN,N,

and C))"" = C;l = _K_l(’”lrz)Elz

where [= v, x v, identity matrixi=1,2and E,=v, x
v, matrix with all elements unity. Then it can be shown
that the C-matrix of the design d is given by

[Cn Clzj
VXV
C =1Cy Cy

Let t'=(t},t,)= vector of treatments of the design d

(2.2)

where t=(t,, t,, ..., t, ) = vector of treatments of the
design d,

and t5 = (t21,t52,., 12y, ) = vector of treatments of
the design d,

We also define Q'=(Q},Q3), the vector of adjusted
treatment totals for the treatments in d, where

Qiz(QﬂaQiz,---aini), i = 1, 2 and
1 b; by
Qi =T —ki" 2 2 W a0y Boar' -
oa=la =

where Bowo, represents the (0, ') th block total
Wj](ococ’), represents the element in the j th row and

(at, ') th column of the incidence matrix N of d, and

T. is the treatment total of the treatment 7., from

b bi
designd, 1 <ji<v, 1< <b,1<a' <b, ] <i<L2.
Also let C, be the C-matrix of d,, i =1, 2. Then the
reduced normal equations for ¢/ — (t],t5) become
kb, (r kI +k C)t -k'(rr)E t.=Q,
-k'(rr,)E, t +k'b (rk L+k,C)t=Q,

2171 277172

2.3)

Adding separately the first and second set of equa-
tions in (2.3) and introducing the non-estimable restric-
tion

tozz t; :Z t1j+z £y =t Tt =0 we get,
P fl B
(2.4)

" T -1
thZ(Vrlrz)-lQlo’ t20_(rlr2v) Q20
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where Qio :Z Qij , i=1,2.8Sincefori=1,2,bk,
il
=vr,and v=v +v,, we get from the first set of equa-

tions in (2.3)

Wlflzk(QleV_lElez) 2.5)

where W, =b,k, (C,+k 'k, 1)

Now we assume that both d, and d, are connected so
that the characteristic roots of C, are

A, =0,A,>0,...,Aiv, > 0, and the corresponding

orthogonal characteristic vectorsare 7,15 1;55-++5 ;.
1

, < i1 < 2. Then it is easy to see that

-1
bZkI (7\,“ + I'lkzk )
(>0) is a characteristic root of W with the character-

istic vector ,A;; , 1 <j< v, . Therefore W, is positive

ij

definite so that

b=k (0 +v'E,L0, )

In the same way

t,=kW;' (Q2+V_1E21Q1)

2.6)

Q2.7)

— -1 . .

where W2 —‘blk2 (C2 +k 1‘21(112) which is
also a p. d. matrix. Therefore the adjusted treatment sum
of squares (with d. f. v— 1) is given by

t'Q=t/Q,+,Q,=k(Q{W;'Q,+Q;W;'Q,) (2.8)

Hence the ANOVA table for testing H : t, =t,=. ..
=t _can be easily constructed.

Again as we have assumed C, the C-matrix of d, has
the ch. roots A;; = 0, X,>0, ..., }\‘ivi >0, with

1

the corresponding ch. vectors 7,1, 7;55.--+, 1];, , Where,

-1/2 .
n,=v . li , then it can be shown that the C-ma-

trix of d has the following ch. roots and orthonormal ch.
vectors.



Characteristic root
o =0
@  w,=k'b,(rk, +k )
@  u,+1=k'rrv

@ MKy :k_lbl (r,k, +k22j)
where 1, and 1 are v, x1 and vxI vectors of unities
respectively, i=1,2, O{=1xv, null matrix,i=1,2.
Thus we get the following Lemma.

Lemma 2.1 : d is connected if d, and d, are con-
nected and conversely.

3. Some combinatorial properties

Nair and Rao (1942) introduced inter-and intra-group
balanced block design (IIGBBD) which was also studied
by Corsten (1962), Adhikary (1965) and others. Let there
be v treatments divided into m groups G,, G, . . ., G |
having respectively v , v., ........ , Vv, treatments (obviously

v=>"v, ). Then if the treatments are arranged in b blocks

each of size k such that any treatment belonging to G,
occurs r, times and any two treatments of G, occur

together in A, blocks, any treatment of G, occurs with

any treatment of G, in Xij blocks of the design

1<1i# j< m. We now generalize this IGBBD to inter-
and intra-group partially balanced block design
(IIGPBBD). Let the v, treatments in G, follow a par-
tially balanced association scheme S, 1 < i < mand the
v. v, pairs of treatments from G, and G, can be grouped
into, m./sets ] < i = 1 < m.Thenwe have the fol-
lowing definition.

Definition — 3.1 : A set of v treatments arranged in b
blocks of size k is said to be an IIGPBBD if it satisfies
the following conditions :

i)  Every treatment belonging to G, occurs in r,
blocks, 1 <i < m.

ii) If any two treatments of G, are jth associate,
then they occur together in 7»?) blocks,j=1,2,..,m,

I <i<m
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Characteristic vector
-1/2
v ]

n'=(n",0").2<j< v,~ij~2

1 1 1 1

N, =(vw,) 2VZ1-(VV,) 2 V21

n;=(0Mm}),2<j<v,

iii) Any treatment t belonging to G, and any treat-

(2.9)

ment belonging to G, , occur together in ki(ff) , blocks, if
the two treatments are chosen from the ath set of v,v,,,

pairs of treatments, 1< @ < M, ,1 <i# {/ <m.

1

Let us denote such a design by IIGPBBD
(ZViab,k,rlrz, ...... ,rm,X?’,?»ff")). Obviously if

Xgi) and A", be independent of j and ¢ respectively

then the IIGPBED reduces to IIGBED. We now state
the following theorem which is easy to prove.

Theorem 3.1 : If we have two PBIBD’s d, and d,
with parameters

d(v,b,r,k, kij ,j=1,2,..,m),1 <i< 2. Then
the SDPD of d, and d, is an IIGPBBD with parameters

v=v,+v,,b=bb,r=rpb,r,=r b, k=k +k,

172271 10722 20 717

@) — 2) 4 @ — : —
Y5 —Klj.bj ,kj —kzj.bl,lgjs m,,A,=T,,.5,

Corollary 3.1 : If d. be a BIBD with parameters d,
(v, b, 1, k, Ki ),i=1,2,thend=d, @ d,isanIIGBBD

with parameters v=v +v,

i0?

b=b,b,.1,=T1,,.b,,A;,; =\, b, A, =\, b,
andX,, =A,b, and A, =T, .I,,..

Corollary 3.2 : Ifd and d, be two BIBD’s with same
parameters (v,, b, 1, k,v,) but with different symbols
thend=d, ® d,isasemiregular group divisible design

(SRGDD).

Proof : Let the treatment of d, form a group G, i =
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1, 2 and let any two treatments of the same group are
first associate and any two treatments of different groups
are second associate. Then it is easy to see that
d =d ® d, is a GDD with two groups
containing v treatments each, with parameters

v=2v,,b=b? k=2k,,r=b,r,,A,=b X, and

A, = roz. It is clearly seen that rk-vA, = 0, so that
the design is a SRGD.

Corollary —3.3 : If d, and d, be two [IGBBD’s then
d=d, ® d,isagainallGBBD.

Theorem 3.2 : If d, and d, represent two m-associ-
ate PBIBD’s which are same except for the treatment

symbols then d=d, @ d, gives a PBIBD with (m + 1)
associate classes.

Proof : Let (i1), (i2), ..., (iv,) represent the v, sym-
bols of the design d,, which are such that the v, treat-
ments of d, have an association scheme S, among them-
selves,i=1, 2. Let us define any treatment of d, to be an
(m + 1)th associate of any treatment of d,. Also if Bjo be
the jth association matrix of the treatments of d, (and
hence of d, also) j = 1, 2, ..., m then d is obviously a
(m+1) associate PBIBD with the association matrices

as
(B, 0) il
B—ko Bj(]Jlf j=1,2,..m, = E 0 if
j=m+1

where 0 is a Vy X Y, null matrix and E is a V, XV,
matrix with all elements unity.

Partially balanced ternary design was introduced by
Paik and Federer (1973). A design d having the inci-
dence matrix NV*® with elements 0, 1, 2 each occurring
at least one in each row, is said to be partially balanced
ternary design if

NN’:aoBo+a1B1+" .+a B (3.1)

where B’s (i > 1) are the association matrices and
B, is v x v identity and a’s are scalars. Now suppose
that design d with the incidence matrix N denotes a

PBIBD with parameters v, ,bO,I‘O,K10 and lzo Then

we have the following theorem.

Theorem 3.3 : d, = d ® d gives a partially
balanced ternary design.

Proof : The proof follows by noting that N, =N, &®
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N,=N, + N, N, =N, =N, where + denotes the direct
sum of the columns of N. Then it can be shown that
N N’; has the same structure as in (3.1).

Corollary 3.3 : If d be BIBD, thend =d x disa
balanced ternary design) (Tocher 1952).

Remark — 3.1 : This process can be continued to
have balanced of partially balanced n-any designs.

4. Optimum properties :

In this section, we have studied the optimum proper-
ties of the derived design from those of the component
designs.

To start with, let D (v, b, k) be the collection of
all binary equireplicate and proper designs with given
parameters v (number of varieties), b (number of blocks)
and k (block size). With the usual additive model, let C,
be the coefficient matrix of the design d. Then the theory
of optimal experimental design is concerned with the
problem of selecting a design which minimises some
functional Y of C, over all possible designs (for details
see Kiefer (1959, 1975)). It is known (Kiefer (1975))
that if for a design d, C-matrix is completely symmetric
(c. s.), it is universally optimal. And such designs with
C-matrix c. s. exist only for some restricted class of
parameter of v, b and k. Cheng (1978) looked into the
case where there was no BBD (for which c-matrix is
c.s.) and introduced the type 1 and type 2 criteria.

Let B be the class of vxv symmetric matrices
with row and column sums all zeroes. Let C, be a matrix
belonging to v, where d €D, a class of binary designs
with parameters v, b, k and let the ch-roots of C, be
Ay=0,4,,>0,...,4, >0.Thenadesign d* will
be called type-1 or type-2 optimal if the roots of the

associated matrix C, minimise the functional \Pf defined

A
by Zf(xdi) , where f is continuous, strictly convex,
i=2

strictly decreasing having continuous derivatives and
being strictly concave for type-I and strictly convex for

<0,f">0,f""<0
and """ > () for type-2.

type-2, i.e. for type-I

Theorem 4.1 : Let d, €D,i=1 2 be type-I or type-

2 optimal. Then the SDP design d = d, ® d, is also
type-I or type-2 optimal in the class of designs

D-D ® D~

{d/d=d ®d,d, D, i=1,2}



Proof : We note from (2.9) that if x be a root of d,
andy be aroot of d, (x> 0, y> 0) then the (+)ve roots of
d, are given by g(x) = a + bx, w(y) = ¢ + dy and another
root g which solely depends on the parameters of d,
and d,, where (from Section-2) a>0,b>0,d >0, ¢>0.
Now d, would be type i, i = 1, 2 optimal if

+ +
PRCOED BT FR—
y
for all designs d;, € D. It is sufficient to prove the first

part. Now we can write Z f(g(x)zz F(X) .

where F = f(g), g is continuous, monotonically increas-
ing. Therefore it follows that F satisfies all the proper-

ties of (). But since d is type i opt., i=1 ,2-2 F(x)

is min, which implies that z f(g)(x)) is min. Hence

the Theorem is proved.

From the above theorem, the following corollary is
immediate.

Corollary 4.1 : The designd =d ; ® d, whered

and d,, are (BIBD’s) with respective parameters, is op-
timum with respect to optimality criteria of typei,i=1,
2 among all designs D={d=d, ® d,,d, € D,,d, €D
, where D _is the class of all connected proper (incom-
plete) block designs,i=1, 2.}

Corollary 4.2 : [IGBBD with parameters v = v, +

v,b=bb,k=k +k,r=rpb, r,=120b, 1, =

172 2> 71 1072

Ab, A,,= A,b and A ,=r1 1, is optimum within
SDP designs similar to those in Corollary 4.2 with respect
to optimality of type i, 1= 1, 2.

Proof : Proof follows from Corollaries 3.1 and 4.1.
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