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ABSTRACT

We plan to study the effectiveness of covariate analysis in the context of Latin Square Designs [LSDs] carried out in groups. We
contemplate on three different experimental situations and in each case we examine the possibility of improving the performance
of the estimates of the covariates’ parameters. This is done in line with the study of optimal covariates’ designs.

1.  Introduction
In agricultural experiments, there are occasions when

a number of covariates are in use and that too in the
context of a Latin Square Design [LSD]. To fix ideas,
we start with an LSD of order q conducted in a field
with q rows, q columns and q treatments. Suppose there
are plenty of resources available so that in each of the q2

‘cells’, there are r otherwise identical plots available. In
effect, we are referring to a single LSD with r
independent observations in each cell. Thus altogether
we are talking about rq2 observations.

Since it is a replicated experiment, there are (r–1)q2

df available for generating what we may term as ‘pure
experimental error’. Further to this, we have additional
(q – 1)(q – 2) df arising out of the model-based errors in
the q-factor LSD. We refer to any standard text book on
experimental designs dealing with such basic designs as
CRD, RBD and LSD. Naturally, also we have q –1 df
for each of the three orthogonal factors : Rows, Columns
and Treatments.

In total, all the rq2 – 1 df are taken care of. This is all
without any involvement of covariates.

Now we wish to introduce a few controllable
quantitative covariates Z1, Z2, ...... - each one assuming
values in the closed interval [–1, 1]. We specialize to
the case of q = 4 i.e., an LSD of order 4. Further, we
take r = 3. Taking clue from Example 8.2.3 of  Das et al.
(Chapter 8, 2015), we find that it is possible to
accommodate 6 covariates and provide most efficient
orthogonal estimates of all the 6 γ-parameters attached
to these covariates in the mean model underlying an LSD.
Explicitly written, the ‘optimal covariates design’ is given
in the table below in the form of an Orthogonal Array.
The first two rows of the array represent rows and
columns : 1 to 4. The third row of the array represents
treatment allocations : 1 to 4. The underlying LSD is
also shown below. The subsequent 6 rows of the array
represent covariates allocations in the form of +1’s and
–1’s. It must be noted that each covariate value in each
row-column location is to be utilized 3 times in the 3
plots therein. Note that ‘pure’ errors absorb a total of 32
df.

The specic chosen field layout in the form of an LSD
of order 4:
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(3.1)

The Orthogonal Array : (Given in next page)

As a matter of fact, there are 48 observations and
hence 38 error df in this thrice replicated LSD of order
4. Thus one would wonder if we can accommodate more
than 6 covariates optimally. A little reection shows that
it is not possible to do so.

LSDs of Order 4 in Different Seasons with the Same
Layout

We now consider an experimental situation wherein
the same LSD of order 4 is replicated in 3 seasons with
identical squares and without any covariates to start with.
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(3.2)

(3.3)

Layout of 3 identical squares S1, S2 and S3 is given
above.

It may be assumed that the seasons are separated
enough to justify independence of successive
observations from the same plot and this holds for all 16
plots. A simple model would suggest:

Model I : yijks = μ0 + θs + ρi + vj + τk + eijks
where ‘s’ represents season, ‘i’ stands for row, ‘j’ stands
for column and ‘k’ stands for treatment in the LSDs in
different seasons. Routine computations yield : SS due
to Seasons (2 df), SS due to Rows - SS due to Columns
- SS due to Treatments - each carries 3 df. These leave
36 df for error - 6 df within each season [giving a total
of 18 df] and 2 × 3 = 6 df for each Season × Eect [Row/
Column/Treatment] interaction - once the model is
extended by incorporating the interaction terms.

Now let us introduce a few covariates and discuss
about the possibility of optimal estimation of the
covariate parameters. Note that the only hurdle
corresponds to the interaction terms involving the three

seasons. Fortunately, for each combination of Season vs
Eect Interaction [arising due to Rows / Column /
Treatments], there are 4 observations. Therefore, the
same covariate design as described above can optimally
accommodate 6 covariates. We refer to Das et al. (2015)
for necessary theory. Here optimality has to be
understood in proper contexts. We will consider different
situations :

(a) There are altogether 6 covariates and these are
available in all the three seasons. Naturally all the
covariates parameters can be optimally estimated and
we attain ‘global’ optimality [minimum variance of
σ2 / 48].

(b) There are 6 covariates in each season and these
are totally dierent from season to season. Here again all
these can be optimality estimated and this time it is ‘local’
optimality with minimum variance of σ2 / 16 for each.

(c) Altogether there are 6 covariates [C1 to C6] and
these are grouped as : Seasons I /II : C1 and C2; Seasons
I / III : C3 and C4; Seasons II / III : C5 and C6. A little
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reflection shows that this time we attain ‘local’ optimality
with minimum variance of σ2 / 32.

(d) Another interesting feature would be like : Season
I : C1 and C4-C6; Season II : C2 and C4-C6; Season
III : C3 - C6. The results are similar.

LSDs of Order 4 in Different Seasons with Different
Design Layouts

Lastly, we consider an experimental situation wherein
3 different LSDs of order 4 are utilized in 3 seasons
with non-isomorphic squares and without any covariates
to start with.

Layout of 3 non-isomorphic LSDs in the 3 seasons
S1, S2 and S3 is given below. Note that S1 is already
introduced earlier.

In each season, there are 16 observations and, as
usual, we have 6 df for error. As is known, these errors
are formed of observational contrasts and in case of
LSDs, these arise out of study of ‘tetra differences’. Vide
Shah and Sinha (1996). Unless these errors are formed
of +1’s and –1’s, covariates cannot be optimally
estimated. Vide Das et al. (2015). For S1, we already
have from the OA a set of 6 observational contrasts for

optimal estimation of the covariates parameters. For the
other two, we display below a set of 3 observational
contrasts for each.

Just as in the above, we may consider the following
cases towards optimal estimation of covariates
parameters. Note that the seasons are well-separated and
independence is assumed.

(3.4)

(3.5)

(3.6)
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(a) There are altogether 3 covariates and these are
available in all the three seasons. Naturally all the
covariates parameters can be optimally estimated and
we attain ‘global’ optimality [minimum variance of
σ2/48]. From S1 we may choose any three of the
covariates, followed by all three from each of S2 and
S3. Note that the covariates values are cell-based and
not treatment-based.

(b) There are covariates in each season and these
are totally different from season to season. Here again
all these covariates parameters [6 + 3 + 3 = 12] can be
optimality estimated and this time it is ‘local’ optimality
with minimum variance of σ2/16 for each.

(c) Altogether there are 6 covariates [C1 to C6] and
these are grouped as : Seasons I / II : C1 - C3; Seasons
I / III : C4 - C6. A little reflection shows that this time
we attain ‘local’ optimality with minimum variance of
σ2/32 for each parameter estimate.

(d) Altogether there are six covariates and these are
common to all the three seasons. Since the seasons are
well-separated and independence is assumed, can we
optimally estimate all the six covariates parameters -
with minimum variance of σ2/48? By using the following
allocation layout we can provide an affirmative answer :

[S1C1; S2C1; S3C1]; [S1C2; S2C1; –S3C1]; [S1C3; S2C2; S3C2];
[S1C4; S2C2; – S3C2]; [S1C5; S2C3; S3C3]; [S1C6; S2C3; – S3C3]:

Optimal choices of covariates designs/allocations is a very fascinating area for research and applications in
different fields. We close this paper with yet another non-trivial example of optimal estimation of covariate effect
parameter.

LSD of Order 5 with Optimal Allocation for a Single Covariate
Consider 5 × 5 Latin square:
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Model based on L1 using only one covariate:

Model II : yijk = μ + ri + cj + τk + γijk + eijk;

i, j, k ∈ D = {(i, j, k) : k(i, j) j ≠ k(i, j′), j ≠ j′ = 1(1)5, k(i, j), i ≠ i′  = 1(1)5}

In the absence of the covariate parameter , this is an orthogonal design. Routine computations suggest :

and this is maximum when zijk = ±1 since this is a convex function. Consider another Latin square

which is orthogonal with L1. Now replace 1, 2, 3, 4, 5 of L2 by +1, –1, +1, –1, +1 respectively and get following
matrix version of the Latin square :

Accordingly, with the above choice of the z-values i.e.,
z – vector = (+1,–1, +1,–1, +1, +1, +1,–1, +1,–1,–1, +1; +1,–1, +1, +1,–1, +1, +1,–1,–1, +1,–1, +1, +1) 0, it turns
out that

25 – 1 – 1 – 1 + 2 = 24 since Ri = ith row sum = 1 for all i, Cj = jth column sum =1 for all j and Tk = kth treatment sum
= 1 for all k and G = Grand total = 5.

Thus we are in a position to introduce one covariate
optimally, given the above structure of an LSD of order
5. The resulting variance of  is σ2 /24 as against the
non-attainable lower bound of σ2 /25.

REFERENCES
Shah, K. R. and Sinha, Bikas K. 1996. Row-column

designs. In Handbook of Statistics 13: Design and
Analysis of Experiments. Ed. S. Ghosh and C. R.
Rao. North Holland, 903938.

Das, P., Dutta, G., Mandal, N. K. and Sinha, B. K. 2015.
Optimal Covariates Designs and Their
Applications. Springer, New York.


	Blank Page
	Inside Front Cover.pdf
	Page 2

	Front Cover.pdf
	Page 3

	Back Cover.pdf
	Page 3

	Inside Back Cover.pdf
	Page 2


