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ABSTRACT
In a practical sample survey containing sensitsive questions such as the illegal use of drugs, illegal earning, or incidence of

acts of domestic violence, etc., the respondents may prefer not to confide the correct answers to the interviewer. In such cases the
individuals may elect not to reply at all or to reply with incorrect answers. The resulting evasive answer-bias is ordinarily dicult
to assess. To overcome this difficulty, Warner (1965) has introduced the pioneering randomized response technique for estimating
the proportion of individuals possessing those sensitive attributes which can potentially eliminate the bias. In this paper we
consider the problem of estimating sensitive population proportion by hypergeometric randomized response model. While
implementing the randomized response technique, an important aspect is to take care of the respondents’ privacy regarding the
sensitive attribute. Here we investigate the degree of privacy protection offered to the interviewees in case of using hypergeometric
randomized response model. Based on the pioneering work of Leysieffer and Warner (1976), we derive the jeopardy measures
for our proposed model. We present a numerical illustration on how to choose the device parameters ensuring the privacy
protection within some desired limits as well as maintaining the efficiency in estimation.

INTRODUCTION
Collection of data in surveys on sensitive issues, such as, tax evasion, drug use, illegal abortion, etc. poses a very

difficult task due to non-cooperation of the respondents, and even if they agree to participate, the truthful answers
may not be obtained. To overcome this difficulty, Warner (1965) pioneered the Randomized Response (RR) technique
for estimating the proportion of people bearing a stigmatizing attribute, say A in a community, based on a sample of
respondents drawn by Simple Random Sampling With Replacement (SRSWR). In his method, each respondent is
provided with a randomization device by which he chooses one of two questions ‘Do you belong to A ?’ or ‘Do you
belong to Ac ?’ with respect to probabilities, say, p : (1 – p), where p ≠  1/2. The selected respondent is asked to draw
randomly one card from the box and is asked to report the ‘match’ or ‘non-match’ of his own characteristic with the
question written on the card drawn by him. These RR’s gathered from a sample of persons provide an unbiased
estimator for the sensitive population proportion, say, θA. Based on these RRs the variance of this estimator and an
unbiased estimator for that variance are also given by Warner (1965).

Later significant developments to Warner’s model are made by many researchers. For example, to expect the
greater participation rate of the respondents, Horvitz et al. (1967), Greenberg et al. (1969) developed the unrelated
question model, where in place of both questions being about sensitive charateristic, one question is about sensitive,
and the other is completely unrelated to the sensitive characteristic, e.g. ‘Do you prefer football to cricket?’ or ‘Is red
your favourite colour?’. Boruch (1971) introduced the forced response model where the randomization determines
whether a respondent truthfully answers the sensitive question or simply replies with a forced answer, ‘yes’ or ‘no’.
The idea behind the forced response design is that a certain proportion of respondents are expected to respond ‘yes’
or ‘no’ regardless of their truthful response to the sensitive question, and the design protects the anonymity of
respondents’ answers. That is, interviewers and researchers can never tell whether observed responses are in reply to
the sensitive question. Kuk (1990) proposed a method, where each person selected by simple random sampling with
replacement (SRSWR) is given two boxes, say, Box-1 and Box-2. Each of the two boxes are filled with cards of two
types, say, red and blue with their mixing proportions being p1 : (1 – p1), 0 < p1 < 1 in one box and p2 : (1 – p2),
0 < p2 < 1 in the other; p1 ≠  p2 and p1 + p2 ≠ 1. Every selected person is requested to draw cards for a fixed number
of times, say, K times independently, either from the first box or from the second, according as whether this person
bears characteristic A or not. The respondent is requested to report the number of red cards obtained out of K cards
drawn. Based on these RRs an unbiased estimator for θ, variance and variance estimator are obtained.

Likewise, many contributors of this area have enriched the randomized response literature, for instance, Moors
(1971), Raghavarao (1978), Eichhorn and Hayre (1983), Chaudhuri and Mukerjee (1987), Mangat and Singh (1990),
Mangat (1994), Huang (2004), Kim and Warde (2004), Gjestvang and Singh (2009), Chaudhuri, Bose and Dihidar
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(2011a, 2011b), Dihidar and Chowdhury (2013), Singh and Grewal (2013), Singh and Sedory (2013), Chaudhuri
and Dihidar (2014), Dihidar (2016) among others. We refer to Hedayat and Sinha (1991) as an example of an early
text book on sampling which covers this area as a separate chapter (see Chapter 11). For a comprehensive review of
the literature on these techniques, we refer to the books by Chaudhuri and Mukerjee (1988) and Chaudhuri (2011)
and the various articles in Chaudhuri et al. (2016).

An important aspect of collecting data on sensitive variables is that the survey sampling practitioners need to
take care of the respondent’s privacy to reduce biases due to refusals to respond and intentionally misleading replies.
Lanke (1976) studied the issue of respondent’s privacy protection and the same issue was studied by Leysiefer and
Warner (1976) for dichotomous populations, and by Loynes (1976) for polychotomus populations. Anderson (1977)
studied the efficiency versus protection in a general randomized response model.

Later, Ljungqvist (1993) gave a unified approach to measures of privacy for dichotomous populations, and
Nayak and Adeshiyan (2009), Chaudhuri, Christodes and Saha (2009) proposed measures of jeopardy. Among the
researchers of this area, Giordano and Perri (2012) has compared the efficiencies of unrelated question model at
same privacy protection degree while Dihidar and Basu (2017) has studied the privacy protection issue for a modied
unrelated question model. For randomized response models suitable for discrete valued sensitive variables, Bose
(2015) has investigated in detail the privacy protection and efficiency in estimation. For many other recent rich
developments in this direction, we refer to Chaudhuri et al. (2016).

Motivated by these earlier researchers, in this paper, we make an attempt to investigate the matter namely, to
what extent the respondents’ privacy will be protected while using the hypergeometric randomized response model.
We present some numerical illustrative design parameters ensuring the privacy protection at some desired level at
the same time maintaining high efficiency in estimation. We organize our findings of this research work in the
following sections.

2 Generating RR by Hypergeometric Distribution
Let U = (1, ..., i, ..., N) denote a finite population of N persons labeled 1 through N. Let

yi = 1 if ith person bears the sensitive characteristic A
   = 0, otherwise.

Our objective is to estimate the population proportion   bearing the sensitive characteristic A, using

randomized response technique (RRT).

For generating the hypergeometric randomized responses we proceed in the following way. We prepare two
ramdomized response boxes, say, Box1 and Box2, where each of the two boxes are filled with cards of two types,
say red and blue; suppose Box 1 contains total N1 number of cards, of which r1 cards are red and the rest N1– r1 cards
are blue; and Box 2 contains total N2 number of cards, of which r2 cards are red and the rest N2 – r2 cards are blue;
and r1/N1 ≠ r2 / N2. We consider the simple random sampling with replacement (SRSWR) scheme for selection of
respondents, this scheme being popularly used in most studies on randomized responses. Each respondent in sample
s of units collected by SRSWR is given two boxes and requested to draw cards K times without replacement, either
from the first box or from the second, according as whether this person bears the sensitive characteristic A or not,
and is requested to give the randomized response as the number of red cards out of the K cards drawn. The collected
randomized responses from n selected respondents will be used to estimate θ.

Let us denote Ep, Vp as the expectation and variance operators for sampling design p, being SRSWR here, and
ER, VR as the conditional expectation and variance operators for randomized response collection stage given a
sample unit is chosen. Then the overall expectation, variance operators denoted by E and V are given as E = EpER

and V = EpVR + VpER. So, if yi denotes the y-value for a person chosen on the ith draw for (i = 1,..., n) and if fi denotes
the number of red cards happened to be obtained out of the K trials as reported by that person, then following the
approach of Chaudhuri (2001) we can have
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and

This leads to

and

So if we call

And

Clearly an unbiased estimator for Vi = VR(zi) can be considered as

Now an unbiased estimator for   is given by
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And

where Vi = VR(zi) .V ( ) can be unbiasedly estimated by

because

                                                        

where 
and

We now note that  involves Vi and increases as Vi itself increases too. So, in order to increase the efficiency

of the estimator , i.e. to decrease the , we need to control the Vi values. In this regard, we have seen earlier that
Vi depends heavily on the parameters of the randomization device and hence it can be regarded as the technical
aspects of the device. Uncontrolled use of device parameters may be harmful to the respondents in view of their
privacy protection. Therefore in order to control the Vi values, it is appropriate to examine the behavior of Vi values
in relation to some suitable measure of protection of privacy which is device dependent. This aspect is discussed in
the following section.

3 Protection of privacy for hypergeometric RR model

Under SRSWR, P(y = 1) = θ = Y/N = P(A), is the probability that a person chosen from U at random bears the
sensitive attribute A. Let R be a possible randomized response obtained from a model. On applying Bayes’s
theorem,

and

Privacy protection in estimating sensitive population proportion
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are respectively regarded as the ‘revealing probabilities’ about a person’s actual characteristic A or Ac in reporting R.
If P(A|R) > θ , R is jeopardizing with respect to A and if P(Ac | R) > (1 – θ), then R is jeopardizing with respect to Ac.
Following Chaudhuri et al. (2009), a measure of jeopardy is defined combining these two as

and this is the ‘response-specific’ ‘jeopardy measure’ for the randomized response obtained as R from a respondent
chosen by SRSWR. This measure depends on the specific response of the participant. However, since a measure of
jeopardy quantifies the risk of revealing his/her status (i.e., whether he/she belongs to the stigmatizing group)
which a person undertakes by agreeing to use the randomization device, it should be made known to the participants
before they agree to participate in the survey, i.e, before any response is available. It is therefore justied to use a
measure which is not response-specific but rather could be regarded as a technical characteristic of the device.
Chaudhuri et al. (2009) advocated to combine the values of J(R) into a single index which can be used to quantify
the risk of revealing one’s status at the same time that will depend only on the technical characteristics of the
randomization device. For a measure of ‘jeopardy’, they have proposed to use  J, the average of the J(R) values
over all the possible forms of randomized responses. The closer the  J is to unity, the more the privacy is protected.
However, in general, the better the privacy is protected the higher the variance of the estimator  turns out to be,
for the choice of the randomized response device specific parameters.

We now examine the behaviour in between the efficiency and the privacy protection for the hypergeometric
randomized response model. Prior to that, for the sake of notational simplicity, let us call the probability P(A|R) as
L(R), i.e. if f denotes the number of red balls obtained as randomized response, L(f) is the conditional probability
of bearing the stigmatizing characteristic A given that the randomized response obtained is f.

We have

As  i.e. the two boxes are as alike as possible in proportion property, it can be shown by numerical
illustration that L(f) → θ and this is the desirable property for privacy to be protected, but under such situation
Vi → ∞, and hence the total variance value → ∞, thus destroys the efficiency in estimation. The jeopardy value
corresponding to a particular randomized response as defined above is obtained for hypergeometric randomized
response model as

Dihidar
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On noting that the randomized response f values can range from 0 to K, and taking into account these all possible
randomized response values, the final jeopardy measure is obtained as

The closer  is to unity, the more the privacy is protected. As in general, the better the privacy is protected the
higher the variance of the estimator of θ turns out to be for the choice of the device specific parameters, in order to
study how to keep a balance between the efficiency and privacy protection for the hypergeometric randomized
response model, we present some numerical performance based results in Section 4.

4.  Numerical Illustration
In this section we present the numerical illustration considering a hypothetical population for which θ value is

assumed to be equal to 0.3. For comparison purpose, we consider various types of two devices Box 1 and Box 2 in
the following way. The N1 and N2 values are chosen as 40, 41, 42, ...., 50, and r1 and r2 values are chosen as 20, 21,
22, ....., 30. And the total number of draws i.e. K is taken as 12. As K = 12, we may note that the number of red balls
observed in an attempt of K draws can happen to be any value of 0, 1, 2, ...., K = 12.

For each value of f = 0, 1, 2, ......, K = 12, we compute the L(f) and J(f) for all possible combination of above
mentioned N1, r1, N2, r2 values. As the total number of all possible combinations of N1, r1, N2, r2 values is very large,
being 11^4 = 14641, for easy inspection the values of L(f) and J(f) for all these combinations are presented graphically.
Moreover, the J(f) values obtained are of very large ranges, and so the log (J(f)) values are plotted for clear visualization.

In Figure 1 the values of L(f) for f = 0, 1, 2, ...., K = 12 are plotted against (r1 / N1) – (r2 / N2). It is clear from Figure
1 that for each value of f = 0, 1, 2,...., K = 12, as the difference of  and  approaches to zero, the L(f) values

approach to  θ = 0.3, as is desirable for privacy to be protected. But from Section 2, we have seen that as  

VR(ri) values approach to ∞, and hence the V( ) approaches to ∞, meaning the efficiency in estimation approaching
to zero.

In Figure 2 the values of log (J(f)) for f = 0, 1, 2, .... , K = 12 are plotted against (r1 = N1) – (r2 / N2). It is clear from
Figure 2 that for every f value, as the difference of  and  approaches to zero, the log (J(f)) values approach to
0, meaning the J(f) values approach to 1, as is ideal for privacy to be protected.

Next, we examine the behaviour of   over all f = 0, 1, ...., K = 12 in relation with V( ). Deleting the combinations

of N1, r1, N2, r2 values causing the zero denominator for V( ) values, the range of   and V( ) happen to be
respectively (0.8483, 799.7576), (0.007, 3874.335), meaning that both the ranges are too much wide to see in a
graphics window. So, for clear visual inspection, we make an attempt to look into the quantile values. For this
purpose, following Chaudhuri (1996) and Chaouch and Goga (2010), we investigate the bivariate geometric quantile
values for the joint distribution of   and V( ) as presented in the Table 1. According to Chaudhuri (1996), the
geometric quantile corresponding to a fixed direction u and based on the d-dimensional data Y1, ... YN of finite
population U = {1,..., k,...,N}, where N is the size of the finite population and d  ≥ 2, is defined by

where Rd is the d-dimensional real value space and the multivariate loss function  φ : Bd × Rd is given by

with ||.|| as the usual Euclidean norm and < .,. > as the usual Euclidean inner product. The u-th geometric quantile
Q(u) is indexed by a directional ‘outlyingness’ parameter u. The spatial median is obtained for u = 0 and Q(0) is
called the center of the data cloud formed by the Yk’s. On the other hand, for u ≠ 0, Chaudhuri (1996) interprets ||u||
as an ‘extent of deviation’ of Q(u) from the center of the data cloud. As per his definition, the geometric quantile is
called ‘central’ for ||u|| close to 0 and ‘extreme’ for ||u|| close to 1. Following this denition, in Table 1, the central
quantile as well as the medium extent and extreme quantiles in both positive and negative directions are obtained.

 1
n

  

Privacy protection in estimating sensitive population proportion



13RASHI 2 (2) : (2017)

  1
n

   

According to the measures obtained in Table 1, to examine the behaviour of   and V( ), for clear visual

inspection, in Figure 3(a) we plot the values of   and V( ) versus  –  upto extreme quantile values, and as the
jeopardy values close to 1 means the privacy is protected, for much more clear visual inspection in Figure 3(b) we

Figure 1: Values of L(f) for f = 0, 1, 2,  .., 12 versus (r1=N1) – (r2/N2) for  = 0:3

Dihidar
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Figure 2: Values of log (J(f)) for f = 0, 1, 2, ..., 12 versus (r1/N1) – (r2/N2) for  = 0:3

Privacy protection in estimating sensitive population proportion
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Table 1: Bivariate geometric quantile values obtained for   and V ( ) for  θθθθθ     = 0:3 and n = 100.

Extreme(-ve) Medium(-ve) Central(-ve) Median Central(+ve) Medium(+ve) Extreme(+ve)
u = (–0:75, – 0:34) u = (–0:4, –0:3) u = (–0:2,– 0:2) u = (0, 0) u = (0:2, 0:2) u = (0:4, 0:4) u = (0:65, 0:65)

||u||= 0:8235 ||u|| = 0:5 ||u|| = 0:2828 ||u|| = 0:0 ||u||= 0:2828 ||u||= 0:5657 ||u||= 0:9192
0.9393 1.4791 1.8018 2.2865 3.2762 5.8047 37.6292

V( ) 0.0233 0.0937 0.1229 0.2999 0.8395 2.6087 31.8903

Figure 3: Jeopardy and variance values plotted against (r1/N1) – (r2/N2) for  θ = 0:3 and
n = 100 : (a) Around Extreme(+ve), (b) Around Medium Extent(+ve) quantile

plot the values near about the medium extent quantile values. It is clear from both Figure 3(a) and Figure 3(b) that
as  the jeopardy values approach to 1 and V( ) approach to high values, meaning the decrease in
efficiency in estimation. Thus, the two aspects of ensuring high efficiency in estimation and guaranteeing a high
degree of respondent privacy protection, are inherently coflicting. So, we have to choose our randomization device
parameters in such a way that the efficiency of estimation can be maximized while maintaining a stipulated level of
privacy protection. For example, examining the results as shown in Figure 3(a) and Figure 3(b), we may decide to
make the randomized response devices so as to keep the jeopardy values within 0.8 and 1.2 as well as the variance
of the estimator within 1.2. In such a stipulated decision, to have an idea about what may be the device parameters,
we present in Table 2 some numerical observations. In this table, for some illustrative device parameters, along with
the   and V( ) values, we present the values of the efficiency of the
estimator as dened by E f f = (1/V ( )) * 100:0 and the randomization effect as defined by Re f f = (V ( )/VDirect( )),

where VDirect( ) =  denotes the variance of the estimator of θ for direct response survey. Though the Re f f

value more than 1 is evident in surveys with randomized response techniques, still any statistician’s aim should be to
keep the V ( ) as small as possible to obtain high efficiency, that means to keep the Re f f values as small as possible,
but together with taking into account the respondents’ privacy to be protected well. Hence to prepare the randomized
response devices, we need to look into the three aspects, namely jeopardy, efficiency and randomization eect as
illustrated below.

The illustrative results of Table 2 indicate that if we make the two devices with N1 = 60, r1 = 20, and N2 = 59, r2
= 23, we can make the respondents assured to have the almost sure privacy protection measure, being 1.047739, as
well as we can keep the variance of our estimator as small as 0.134942, resulting the efficiency as 741.06% and the
randomization effect as 64.26 times high as compared to direct response survey. Similary, if we make the two

Dihidar
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devices with N1 = 58, r1 = 21, and N2 = 57, r2 = 24, we can make the respondents assured to keep the privacy
protection at 1.190472, slightly departed from its ideal value 1, at the same time we can maintain the variance of our
estimator as small as 0.117098, resulting the efficiency as 853.98% and the randomization effect as 55.76 times high
as compared to direct response survey. However, the other device parameters yielding the smaller randomization
effect can be chosen at the cost of departing the privacy protection, whatever small departure it may be, from its
ideal value 1.

5 Concluding remarks
In this work, an attempt is made to examine how the hypergeometric randomized response model performs in

terms of the both efficiency and protection of privacy measures in estimating the sensitive population proportion.
We have developed the essential theories in this table.

Table 2 : Illustrative device parameters ensuring privacy protection and eciency for  θ θ θ θ θ = 0:3 and n = 100,
E f f = (1/V ( )) * 100.0 and Re f f  = (V( )/VDirect( ))

N1 r1 r1/N1 N2 r2 r2/N2 abs (r1/N1 - r2/N2) V ( ) E f f Re f f

50 20 0.400000 57 26 0.456140 0.056140 1.191797 0.119896 834.06 57.093333
50 20 0.400000 59 27 0.457627 0.057627 1.188896 0.114331 874.65 54.443333
51 20 0.392157 58 26 0.448276 0.056119 1.165098 0.122207 818.28 58.193810
51 20 0.392157 60 27 0.450000 0.057843 1.167136 0.115539 865.51 55.018571
52 20 0.384615 59 26 0.440678 0.056063 1.139544 0.124612 802.49 59.339048
53 20 0.377358 60 26 0.433333 0.055975 1.115105 0.127103 786.76 60.525238
54 20 0.370370 54 23 0.425926 0.055556 1.170505 0.128496 778.23 61.188571
54 20 0.370370 56 24 0.428571 0.058201 1.181653 0.117648 849.99 56.022857
54 20 0.370370 58 25 0.431034 0.060664 1.193526 0.108777 919.32 51.798571
55 20 0.363636 57 24 0.421053 0.057416 1.143071 0.122849 814.01 58.499524
55 20 0.363636 59 25 0.423729 0.060092 1.158100 0.112617 887.97 53.627143
56 20 0.357143 53 22 0.415094 0.057951 1.191342 0.120488 829.96 57.375238
56 20 0.357143 58 24 0.413793 0.05665 1.108009 0.128153 780.32 61.025238
56 20 0.357143 60 25 0.416667 0.059524 1.125413 0.116522 858.21 55.486666
56 21 0.375000 58 25 0.431034 0.056034 1.163405 0.127216 786.07 60.579048
56 21 0.375000 60 26 0.433333 0.058333 1.173426 0.117866 848.42 56.126666
57 20 0.350877 54 22 0.407407 0.056530 1.141814 0.128627 777.44 61.250952
57 20 0.350877 56 23 0.410714 0.059837 1.161561 0.115326 867.11 54.917143
57 20 0.350877 58 24 0.413793 0.062916 1.182491 0.104759 954.57 49.885238
57 20 0.350877 59 24 0.40678 0.055902 1.076007 0.133559 748.73 63.599524
57 21 0.368421 59 25 0.423729 0.055308 1.128398 0.13263 753.98 63.157143
58 20 0.344828 50 20 0.400000 0.055172 1.171120 0.134693 742.43 64.139524
58 20 0.344828 52 21 0.403846 0.059019 1.191746 0.118354 844.92 56.359048
58 20 0.344828 55 22 0.400000 0.055172 1.098325 0.137083 729.49 65.277619
58 20 0.344828 57 23 0.403509 0.058681 1.119438 0.121685 821.79 57.945238
58 20 0.344828 59 24 0.406780 0.061952 1.142065 0.109602 912.39 52.191429
58 20 0.344828 60 24 0.400000 0.055172 1.046684 0.139068 719.07 66.222857
58 21 0.362069 55 23 0.418182 0.056113 1.175502 0.128809 776.34 61.337619
58 21 0.362069 57 24 0.421053 0.058984 1.190472 0.117098 853.98 55.760952
59 20 0.338983 53 21 0.396226 0.057243 1.137258 0.127713 783.00 60.815714
59 20 0.338983 55 22 0.400000 0.061017 1.161656 0.112927 885.53 53.774762
59 20 0.338983 57 23 0.403509 0.064526 1.187942 0.101418 986.02 48.294286
59 20 0.338983 58 23 0.396552 0.057569 1.081707 0.128223 779.89 61.058571
59 20 0.338983 60 24 0.400000 0.061017 1.105406 0.11455 872.98 54.547619
59 21 0.355932 58 24 0.413793 0.057861 1.147491 0.123503 809.70 58.810952
59 21 0.355932 60 25 0.416667 0.060734 1.165624 0.112523 888.71 53.582381
60 20 0.333333 51 20 0.392157 0.058824 1.174286 0.121215 824.98 57.721429
60 20 0.333333 54 21 0.388889 0.055556 1.090099 0.137561 726.95 65.505238
60 20 0.333333 56 22 0.392857 0.059524 1.114814 0.120338 830.99 57.303810
60 20 0.333333 58 23 0.396552 0.063218 1.141902 0.107108 933.63 51.003810
60 20 0.333333 59 23 0.389831 0.056497 1.047739 0.134942 741.06 64.258095
60 20 0.333333 60 24 0.400000 0.066667 1.170384 0.096676 1034.38 46.036190
60 21 0.350000 54 22 0.407407 0.057407 1.178667 0.125336 797.86 59.683810
60 21 0.350000 56 23 0.410714 0.060714 1.198867 0.112566 888.37 53.602857
60 21 0.350000 59 24 0.406780 0.056780 1.108990 0.130086 768.72 61.945714
60 22 0.366667 59 25 0.423729 0.057062 1.174379 0.125321 797.95 59.676667

Privacy protection in estimating sensitive population proportion
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regard. We have presented the situations when the privacy measure can be attained at its ideal level and how the
efficiency behaves in that situation. Our numerical illustration based presenations also support the theoretical
derivations. Finally, we have given some idea about how the devices can be made so as to ensure a stipulated level
of privacy measures as well as to maintain the efficiency in estimation as high as possible. However, for θ value we
shall have to depend on some previous guess value obtained from some reliable sources or from the findings of some
pilot survey. The survey sampling practitioners aiming to estimate the sensitive population proportion with
hypergeometric randomized response model in current situation, and if he can avail such approximate knowledge
about the sensitive population proportion, he may use this idea to design their randomized response devices looking
at the triple aspects of privacy protection, efficiency in estimation and randomization effects. Hence this is the
justication of this research.
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