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ABSTRACT

The estimation of the elements of the data-dispersion matrix poses a real problem when the spatial structure assumes a complex
form. Motivated to find a solution to the above problem, a method of estimation of the data dispersion matrix is proposed.
Though the method is illustrated taking a specific form of the data-dispersion matrix in a particular case, the method (illustrated
in the Introduction section) is quite general and is applicable to any form (whatever be) of the data-dispersion matrix impersonating
even complex spatial structures.

1.  INTRODUCTION
This paper considers the problem of estimation of the data-dispersion matrix in case of known (unknown) complex

spatial structure governing the data emanated from agricultural field experiments under controlled conditions.
Heterogeneity is induced in data under field layouts when they become independent. About a century ago, Fisher
realised the presence of correlation in data collected from contiguous plots. He has proposed the fundamental
principles (randomisation, replication and blocking) of design of experiments in order that the data (generated after
the application of the three principles) become amenable to simple analysis (by application of the analysis of variance
technique, which he himself proposed). The role of the principle of randomisation is supposed to remove bias, so to
say, induce homogeneity among plots within a block. It has been an observed fact over decades that the data remain
correlated even after the application of the three fundamental principles. As the existence of serial correlation is a
reality in data obtained from controlled field experiments, it is necessary to generate procedures of analysis when
the correlation structure is of complex nature. Under complex correlation structure satisfied by the field experimental
data (when such structures are known or when those are assumed to be satisfied with respect to the experimental data
available on hand) the parameters (functions of the first order serial correlation) contained as elements of the data-
dispersion matrix (known or assumed as mentioned above) becomes difficult to estimate by the application of the
method of maximum likelihood as the estimating equations so obtained are not easily tractable. This paper proposes
a procedure of estimation of the data-dispersion matrix under such situations delineated above by invoking the
simulation technique.

Data are arranged in rows and columns (treatments are allotted on plots in rows which are actually terraces and
different terraces represent the blocks (RBD case). In case when CRD (with equal replication) is used such terraces
do represent replications keeping the randomisation structure of treatments imposed (in terms of their plot-wise
positions) in the first terrace as fixed and considers the respective positions in the terraces along the down ward
slopes generating, so to say, replications corresponding to the treatment-lay-out (as in the first terrace). Under the
above spatial situations (terrace cultivation), it is natural to consider existence of correlation  in data
emanating from contiguous plots within a terrace and also existence of correlation  from contiguous plots
lying in different terraces. In the background of the above premise, we may consider that the observations, yij’s are
generated from a multivariate normal (MN) distribution with some mean (depending on the set-up of the experiment,
completely randomised design or randomised block design as referred to above) and Dispersion Matrix (DM), Σ.
Considering the CRD model, yij =  μ + αi + eij, where eij ‘s ∼ MN (0, Σ), and yij ‘s ∼ MN (β, Σ), β being the mean
vector,  for all i and j (“i” represents the treatment number and “j” represents replication number).

Superimposing the structure mentioned above, the elements of the Σ matrix are as follows:

V (yij) = σ2, for all i and j; Covariance (yij and yi+l, j+k) = σ2, ; where Cov.(yij and yi+1, j) = σ2,  and Cov.(yij

and yi, j+1) = σ2,     (1.1)

RASHI 2 (2) : 23-28  (2017)

E-mail: spbbr18@gmail.com



24RASHI 2 (2) : (2017)

On a Procedure of Estimation of Data-Dispersion Matrix

In a CRD set up as mentioned above if we take 4 treatments and 3 replications per treatment (the first terrace
determines the arrangement of treatments (after randomisation) and the terraces lying below the first terrace follow
the same arrangement of treatments, thus the respective plots on the terraces (below the first terrace) can effectively
be considered as replications with respect to the treatments considered in the first terrace, the structure of the
Σ matrix is as follows :

In particular, 12 plot-positions along the first row (also in other rows) follow the order (of the observations) as
mentioned in the arrangement just below (with respect to the SIGMA matrix as above) :

[Tr, Rep] : (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) (4, 1) (4, 2) (4, 3)
Also, 12 plot-positions along the first column (also in other columns) follow the order (of the observations) as

mentioned in the arrangement just below (with respect to the SIGMA matrix as above):
[Tr, Rep]: [(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) (4, 1) (4, 2) (4, 3)] - Transposed (perpendicular

arrangement).
The form of the theoretical SIGMA matrix (with entries represented in terms of?_(1 &) ?_2) is presented below

(in particular, Covariance (yij and yi+l, j+k) = σ2, ). Indeed, cov ((i, j) and (l,k) ) =  σ2        (1.2)
is used to denote the elements of the SIGMA matrix as below.

cov ((i,j) and (l, k) ) =  σ2; cov ((1, 2) and (2, 2) ) = ; cov ((1, 3) and (3, 3) ) =

; cov ((3, 1) and (1, 3)) = ; cov((3, 2) and (4, 2)) = ;

cov ((3, 3) and (1, 3)) = ; cov ((4, 2) and (3, 1) ) = 

The application of the model ((1.1) in conjunction with (1.2)) can be found in Pal, S., and Basak, S. (2016), and
Pal, et al (2016). In Pal et al. (2017), a variant of (1.2) has been used.

The method of estimation of the elements of the Σ matrix can be effected by considering a large number of
simulations(with in each simulation period generating several samples of eij's from multivariate normal population
with mean vector 0 and the above mentioned dispersion matrix Σ).

Illustrationson the theoretical SIGMA and estimated SIGMA are presented for some particular cases in Table 1
to Table 4.

The precision of the estimated SIGMA is determined by the criterion D* defined below:

Let Σ = (σij) and  , then D = Σ ij |σij – | and D* = , n being the total number of elements

in the SIGMA matrix, The values of the criteria, D and D* for different combinations of values of ρ1 and ρ2 are given
in Table 5 (Section 2, titled, Results and Conclusion).

The two matrices, Σ and   are also compared on the basis of their eigen values (minimum and maximum) in

order to detect possible discrepancies in the values of the two matrices Σ  and  and such results are also presented
in Table 5.
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On a Procedure of Estimation of Data-Dispersion Matrix

 A critical investigation in the values (Table 5) of the coefficients (D and D*)reveals only miniscule differences in
the values of the true and estimated matrices (also very small differences are found to exist in the values of the
minimum and maximum eigen values of the Σ and   matrices). Thus this study concludes that  matrix can be
regarded as a valid estimate (based on the above criterion) in further application of analysis of variance technique in
complex spatial situations.
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