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ABSTRACT
Although proportional hazard rate model is a very popular model to analyze failure time data, sometimes it becomes important
to study the additive hazard rate model. Again, sometimes the concept of the hazard rate function is abstract, in comparison to
the concept of mean residual life function. A new model called * dynamic additive mean residual life model’ where the covariates
are time-dependent has been defined in the literature. Here we study the closure properties of the model for different positive
and negative ageing classes under certain condition(s). Quite a few examples are presented to illustrate different properties of

the model.
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1. Introduction

In the literature, alarge number of papers deal with
modeling and analyzing dataon thetime until occurrence
of an event. These events sometimes represent the time
tofailure of asystem of componentsor aliving organism.
Cox’s[2] proportional hazard rate model has been used
to model failure time data. This model is very popular
for analysis of right-censored data, and has been used
for estimating the risk of failure associated with vector
of covariates.

Although multiplicative hazards model is mostly
studied in literature, it isimportant to study the additive
hazard ratemodel aswell. Thisisbecausefromthepublic
health point of view it isvery important to study therisk
differencethan therisk ratio in describing the association
between the risk factor and the occurrence of adisease,
see, for instance, Bredow and Day [9, 10]. They have
shown that additive hazard rate model fits certain type
of data better than the proportional hazard model. Lin
and Ying [3] have shown that the additive hazards model
provides a simple structure for studying frailty models
and interval-censored data, which are very difficult to
deal with under the proportiona hazardsmoddl. A family
of proportional and of additive hazards models for the
analysis of grouped survival data has been considered
by Tibshirani and Ciampi [13]. Mckeague and Utikal
[7] have developed goodness-of-fit tests for Cox’s
proportional hazards model and Aalen’'s additive risk
model, and each model has been compared on an equal
footing with the best fitted fully nonparametric model.
Using generalized linear models (GLM), Hakulinen and
Tenkanen [15] have shown how a proportional hazards
regression model may be adapted to therelative survival
rates. Bad'ia, Berrade and Campos|[4] have studied some
ageing characteristics of additive and of proportional
hazard mixing models. They have al so studied the effect
of mixing on stochastic ordering. Martinussen and
Scheike [16] have compared the full Aalen additive
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hazards model and the change-point model, and
discussed how to estimate the parameters of the change-
point model. The analytical properties of additive
hazards model have been studied by Nair and Sankaran
[11]. They have compared the ageing properties of the
baseline random variable and the induced random
variable. Li and Ling [12] have discussed the ageing
and the dependence properties in the additive hazard
mixing model. Some stochastic comparisons have also
been studied in this paper. Bin [6] has discussed
regression analysis of failure time under the additive
hazards model, when the regression coefficientsaretime-
varying.

Sometimes the concept of hazard function becomes
abstract, in comparison to the concept of mean residual
life(MRL) function. The hazard rateistheinstantaneous
failure rate at any point of time, whereas the MRL
summarizes the entire residua life. The MRL function
has more intuitive appeal for modeling and analysis of
failure datathan the concept of hazard rate function. With
this in mind, the additive mean residual life (AMRL)
model has been developed. The AMRL model specifies
that the MRL function associated with the covariatesis
the sum of the baseline MRL function and the constant
representing the function of covariates. For example, a
new drug prescribed to a patient may work well in the
beginning of the treatment period, but after acertaintime
the effect of the drug may decrease. Then it is very
important to know when and how fast the drug becomes
ineffective, see, for instance, Bin[6]. AMRL model helps
us design further studies to explore the treatment
strategies for patients. In some practical situations, the
covariates may not be constant over the whole time
interval [0,1), but they may vary over different time
intervals. Using this idea Das and Nanda [14] have
developed a new model called dynamic additive mean
residual life (DAMRL) model. They have studied the
closure of thismodel under different stochastic orders.



In section 2 we give a brief description of the
DAMRL model, section 3 provides some ageing classes
under the DAMRL model with some illustrative
examples, and Section 4 concludes the manuscript.

Throughout the paper, increasing and decreasing
properties of afunction are not used in strict sense. For
any twice differentiable function g(t), wewriteg'(t) and
g’ (t) to denote the first and the second derivatives of
g(t) with respect to t, respectively. We denote by
a 28" b to mean that a and b have the same sign,
whereas o def Btellsthat oris defined by S.

2. Dynamic Additive Mean Residual Life M odel
Let X be anonnegative random variable with finite

mean, survival function F.(.) and hazard rate function
ry(). Then the MRL is given by

mx(t)=E[X —tX >t = ]:;\7((;;)”‘”
x (1,
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for t > 0 such that Fy(¢)> 0.

Let X* be a nonnegative absolutely continuous
random variables having MRL function my*(t). Then
the AMRL model is given by

my*(t) = ¢+ mx (1), (2.1)
where c is a function of covariates, independent of t
such that c+my(t) isnonnegativefor al t. Dasand Nanda
[14] have shown that Additive Hazard Rate model and
AMRL model in general do not imply one another. For
some more work in this direction, one may refer to Yin
and Cai [5], Sun and Zhang [8] and the referencesthere
in. If the covariates are time-dependent, the AMRL
model reduces to dynamic AMRL model given by
my* (t) = c(t) + my (1). (2.2)
Before going to discuss some results we give alemma
without proof, which gives some conditions on c(t)
[cf. Das and Nanda [14]].

Lemma 2.1 If two nonnegative random variables X and X* satisfy (2.2), then the following conditions must be

satisfied:
(i) 0<e(t)+mx(t) <o, forall t=0;
(ii) c(t) is a continuous function of t = 0;

(iii) t+ c(t) +mx(t) is increasing in t = 0;

Rt dt

(iv) if there does not ervist any to with mx (tg) = 0, then / et T2 ) O

Remark 2.1 It iseasy to seethat if c(t) isincreasing in
t > 0O, then the condition (iii) of Lemma 2.1 trivially
holds, whereas when c(t) > 0, for all t, condition (i) of
Lemma 2.1 automatically holds.

Again, it can be noted that

1+ m'y.(t)
mys (1)

e mx(t)
= "X o rmr®

rx«(t)

d(t)
c(t) +mx(t)

(2.3)

3. Properties of Some Ageing Classes

Ageing is an inherent property of aunit that may be
a system of components or a living organism. It is
characterized by various quantities, viz., hazard rate,
meanresidua life etc. By ageing we generally mean the
adverse effect of age on the random residua lifetime of
a unit. To be specific, by ageing we generally mean
positive ageing, which meansthat an older system hasa
shorter remaining lifetime, in some statistical sense, than
anewer one. In this section we have studied the closure
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Jo c(t) +mx(1)
of different ageing properties such asIFR (increasing in
failure rate), IFRA (increasing failure rate in average),
NBU (new better than used), NBUFR (new better than
used in failure rate), NBAFR (new better than used in
failurerate average) and their dualswith time-dependent
covariate(s).

In this section we study the condition(s) under which
Xand X* satisfying (2.2) share some ageing properties.
Thefollowing theorem showsthat under themodel (2.2),
the IFR (resp. DFR) property of X is transmitted to the
random variable X* under certain condition on c(t). Keep
inmind that arandom variable X with failureratefunction
rx(-) issaid to be IFR (resp. DFR) if rx(t) isincreasing
(resp. decreasing) in't.

The following theorem states the conditions for X*
to be IFR. Here we need c(t) to be positive.

Theorem 3.1 If the random variable X is IFR, then
therandom variable X* satisfying (2.2) is|FR provided,
forall t>0,

L@ o
() *Ca' isincreasingint;

(i) c(t) is logconvex.
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Proof : Differentiating (2.3) with respect to t, we get

mx (t)

m'y (t)e(t) — mx () (t)

N c(t)e’ (t) — 2(t)

+ rx(t)

R ORI

+'m_\-{!}f'”{f) — (t)ymy (t)

(c(t) +mx(t)*
Now, the first term in the above expression is
nonnegative because X is IFR, the second term is

nonnegative due to (i) in the hypothesis, the third term
is nonnegative because of (ii), and finally the last term

') o o
e (1) isincreasingint, whichisaways

isnonnegativeif

true. Thisisbecause, by (ii), c(t) isconvex, whichimplies
that c’(t) isincreasing int, and since X is IFR, itisaso
DMRL, so that mx(t) is decreasing in t. Hence, X* is
IFR. O
We now present an application of Theorem 3.1.
Example 3.1 Let X follow standard exponential

(2 + )% —

(e(t) +mx(t))”

1)(B+t)

9

(c(t) +mx (1)

(3.4)

distribution. Take c(t) = exp(-t), for all t > 0. Clearly,
c(t) satisfies all the conditions of Lemma 2.1. Again,
conditions (i) and (ii) of Theorem 3.1 are also satisfied.
Hence, by Theorem 3.1, X* isIFR. O

Thefollowing counterexample showsthat condition
(i) of Theorem 3.1 is a sufficient condition but not
necessary.

Counterexample 3.1 Let X be a random variable
having mean residual life my(t) = 1/(2+t), t > 0. Take
c(t) = /(3 + t), for all t >0. Then c(t) satisfies all the
conditions of Lemma 2.1. Again, condition (ii) of
Theorem 3.1 is satisfied while condition (i) is not. Now,
for all t >0,

(2+1)

rxe(t) =

2+1)(5 + 2t)

which can be shown to be increasing in t. Thus, X* is
IFR. Hence, condition (i) of Theorem 3.1 is a sufficient
condition but not necessary.

Remark 3.1 By taking X to be a standard exponent|aJ

distribution, and
1/(2 + t)?, DEtLl,
c(t) = ,
1/(3(2 +t2)), t>1,
one can show that condition (ii) of Theorem 3.1 is a
sufficient condition but not necessary. O

The following theorem states the conditions for X*
to be DFR. Here we need c(t) to be positive. The proof
being similar to that of Theorem 3.1 is omitted.

Theorem 3.2 If therandomvariable X isDFR, then
therandomvariable X* satisfying (2.2) isDFR provided,

(t
0) c(.t)) isdecreasingint;
(i) c(t) isincreasing and concave;
foralt>0. 0O
Here we present an application of Theorem 3.2.
Example 3.2 Let X be a random variable having

the failure rate

rx(t) =
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(3+t)(5+2t)’

Takec(t) = t/(1+t), for all t >0. Clearly, c(t) satisfies
all the conditions of Lemma 2.1. One can verify that

my (1) L .
W isdecreasing int >0 and also c(t) is concave.
Thus, by Theorem 3.2, X* isDFR. 0

Remark 3.2 In Example 3.2 if we take c(t) = 7’

for all t >0, then it can be seen that condition (i) of
Theorem 3.2 is a sufficient condition but not necessary;,
while if in the same example we take

(1+1)? 0<t<1,
c(t) =

4t, =1, (3.5

then it can be shown that condition (ii) of Theorem 3.2
is a sufficient condition but not necessary. O

The following theorem shows that the DAMRL
model preserves the IFRA (increasing failure rate in
average) (resp. DFRA (decreasing failure rate in
average)) property under certain conditionson c(t). Itis
useful to remind that a random variable X with failure
rate function rx(-) is said to be IFRA (resp. DFRA) if

ot
(,l / F'.\'[HJH'H) isincreasing (resp. decreasing) int >
S0

0.

Theorem 3.3 If therandomvariable Xis|FRA, then
the random variable X* satisfying (2.2) is IFRA
provided, for all t >0,
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my (1

O )

c'(t)
(i) W isincreasingint.

isincreasingint;
Proof : Note, from (2.3), that

1 ot : 1 t mx (_“.) 1 t (:,r(_”.} .
?./“ rx-(u)du = ?.A r.\(u}mdu—i—;ﬁ mdu
= P(1), say

Differentiating P(t) with respect to t, we get that P'(t) > 0for all t > O, if

cttmx(®) = t [ c(u) +mx(u)

of ,_r:"(f) B (-’('u)
(b) /0 ((.‘(?‘) +mx(t) c(u) +mx (”)) =t

Now, since X isIFRA, it can be shown that (a) holds if

. mx (t x (u
/ mx(t) mx (1) ry(w)du > 0
o \clt)+mx(t) elu)+mx(u)
which istrue by (i). Further, (b) holds by (ii). Hence, the result follows. O

Remark 3.3 Note that Example 3.1 can be
considered as an application of Theorem 3.3.
Counterexample 3.1 can be considered to show that
condition (i) of Theorem 3.3 is a sufficient condition
but not necessary. That condition (ii) of Theorem 3.3
cannot be dropped, can be seen by taking X asa standard
exponential random variable, and c(t) = 1/(2 + t2), for
alt>0. 0

Thefollowing theorem whose proof issimilar to that
of Theorem 3.3, showsthat the DAMRL model preserves
the DFRA property under certain conditions on c(t).

Theorem 3.4 If therandom variable XisDFRA, then
the random variable X* satisfying (2.2) is DFRA
provided foralt>0,

my (1) -
0] c(t) isdecreasingint;
R O N o
(i) c(t)+my (1) isdecreasingint. O

Remark 3.4 An application of the above theorem
can be considered by taking X as standard exponential
and c(t) asgivenin (3.5). 0

Remark 3.5 Considering X as in Example 3.2 and

c(t) = ——, t =0, one can see that condition (i) of

Theorem 3.4 is a sufficient condition but not necessary.
That condition (ii) of Theorem 3.4 is a sufficient
condition can be seen by considering

t, 0<t<0.5,

c(t)=<1/4+12, 05<t<]1,

2t — 3/4, £ 1.

and X asin Example 3.2.

The following theorem shows that the DAM RL
model preservesthe NBU (new better than used) (resp.
NWU (new worse than used)) property under certain
conditions on c(t). It is useful to remind that a random
variable X issaid to have NBU (resp. NWU) property if

Fx(t+z) < (resp. =) Fx(t)Fx(z), forall z, ¢ > 0.
Theorem 3.5 If therandomvariable X is NBU, then

the random variable X* satisfying (2.2) is NBU,
provided, for all t >0,

c(1)

m, (1) is logconvex;

) c() . .
() sy (0)(ct) + my (1)) 1S deCTEasingint

Proof : It can be shown that X* is NBU if and only
if, for all x,t =0,

O

4 g vtz [ T Y — v l1)elu
/ rx(u)du — / rx(u)du + / : (”). . (“')((u)du. -—/ ‘ (“). L {“)[(”)(ha =4
T 0 0

i c(u) +mx(u)
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Since x isNBU, it is sufficient to show that, for all i, t > 0,

/'“r“' d(u) — rx(u)e(u)

c(u) + mx(u)
Thisholdsiif
c(t)

) — (@
du /l

y  c(u) +mx(u)

d c(t)
dt {E” (1 * m.,\—(t)ﬂ T mx () [c(t) + mx ()]

Thisistrueif the hypotheses are true.

Remark 3.6 Example 3.1 can be taken as an
application of Theorem 3.5. By taking X as standard

exponential, and c(t) = t >0, one can show that

24+
condition (i) of Theorem 3.5 cannot be dropped. That
condition (ii) of Theorem 3.5 is a sufficient condition
but not necessary can be seen by taking X a random

1
variable having mean residual life mx(t) = Py for

alt>0, 0
Thefollowing theorem whose proof issimilar to that
of Theorem 3.5 showsthat the DAMRL model preserves
the NWU property under certain conditions on c(t).
Theorem 3.6 If therandomvariable XisNWU, then
the random variable X* satisfying (2.2) is NWU,
provided, for all t >0,

(i 1+ is logconcave;
m (t) ’

y <(r) . o
(i) mX(I)(C(I)+mX(I)) isincreasingint. O

c(t)
Clearly, c(t) satisfies all the conditions of Lemma 2.1. Now, we see that, for 0 <t < 1, In (”

concave. Again,

c(t)
mx (t) (e(t) +mx (1))

1612 (14+12)? exp(2t—12)

du = 0.

is increasing in f.

O
Remark 3.7 Sncea concave functionislogconcave,

condition (i) of Theorem3.6 can bere-placed by* - )
X

is concave'.

Remark 3.8 To present an application of Theorem
3.6, one may take X as a standard exponential random
variable, and c(t) = t/(1 + t),t > 0. 0

Thefollowing counterexample showsthat condition
(i) of Theorem 3.6 is a sufficient condition but not
necessary.

Counterexample 3.2 Let X be a random variable
with survival function

) At exp [t —12/2], 0<t<1,
Fx(t) = (E1+r)s [ ]
sexp[l —¢/2], t 21

Itisshownin Nanda, Dasand Balakrishnan [ 1] that
XisNWU. Take

2, 0<t

F/AN

1;

2t—1, 21

mX(I)) is not

2t—1
2(2+1)°

(A(1+1) exp[t—t2 2]+ (1+16)F exp(1/2)) (A2 (14+12) exp[t—12 /2] +4(1+1) exp[t—12 2]+ (1+1)% exp(1/2))

0tk

t=1

isincreasing in t. Now, a tedious agebra shows that X* is NWU. Hence, the condition (i) of Theorem 3.6 is a

sufficient condition but not necessary. O

Remark 3.9 Taking X to be a random variable
having mean residual life my(t) = 1+t, t >0, and c(t) =
t, for all t >0, it can be shown that the condition (ii) of
Theorem 3.6 isa sufficient condition but not necessary. o

Thefollowing theorem showsthat themodel in (2.2)
preserves the NBUFR (new better than used in failure
rate) property. It is useful to remind that a random
variable X issaid to be NBUFR (resp. NWUFR) if rx(t)
> (resp. <) rx(0), for dl t > 0. The proof is omitted.
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Theorem 3.7 If the random variable X is NBUFR,
then therandomvariable X* satisfying (2.2) isNBUFR,
provided, for all t >0,

o _ ()

O my )™ Ex)

. c'(t) c'(0)

() cty+my (1) = e(0)+ EX) o



Remark 3.10 Let X be a random variable having

mean residual life my(t) = e t> 0, and

1
c(t) = 5, t >0. Then one can show that condition (i)
3+t

of Theorem 3.7 is a sufficient condition but not
necessary. O
Remark 3.11 Taking X to be a standard exponential

1
random variable and c(t) = ol t> 0, it can be
shown that condition (ii) of Theorem 3.7 cannot be
dropped. 0

Corollary 3.1 If the random variable X is NBUFR,
then the random variable X* satisfying (2.2) isSNBUFR
provided, for all t >0,

c(t)
) m isdecreasing int;

y v o
(i) W isincreasingint. 0

Remark 3.12 Example 3.1 can be considered as an
application of Theorem 3.7 and also of Corollary 3.1. 4

Thefollowing theorem showsthat themodel in (2.2)
preserves the NWUFR property.

Theorem 3.8 If the random variable X is NWUFR,
thentherandomvariable X* satisfying (2.2) isSNWUFR,
provided, for all t >0,

e o)
0 )~ EX)

O I (V)
() ey +my ()~ c(0)+E(X)
Example 3.3 Asan application of Theorem 3.8, one

may take X to be a random variable as defined in
Example 3.2, and c(t) as defined in (3.5). O

Proof : X* isNBAFR if, for all t >0,

Das and Nanda
Counterexample 3.3 Let X be a random variable

1+t
as defined in Example 3.2. Taking c(t) = T

one can show that condition (i) of Theorem 3.8 is a
sufficient condition but not necessary, whereasby taking

t >0,

. Ot ],
c(t) = (3.6)

2t—1, t =21,

one can show that condition (ii) of Theorem 3.8 cannot
be dropped. 0

Corallary 3.2 If therandomvariable X is NWUFR,
then the randomvariable X* satisfying (2.2) isNWUFR
provided, for all t >0,

e(t)
0] m isincreasinginft;

y v .
(i) m isdecreasingint. 0

Remark 3.13 Example 3.3 can be considered as an
application of Corollary 3.2. 0
Thefollowing theorem showsthat themodel in (2.2)
preserves the NBAFR (new better than used in failure
rate average) property. Itisuseful to remind that arandom
variable X is said to be NBAFR (resp. NWAFR) if

o rx@ydu > (resp. <) tr,(0), for all t > 0.

Theorem 3.9 If the random variable X is NBAFR,
then therandomvariable X* satisfying (2.2) isNBAFR,
provided, for all t >0,

) o)
0 )= ECX)

1 f 1 ot S (0
1 / rxwmx(u) . o1 / dw .o
t Jo c(u)+mx(u) t Jo clu)+mx(u)

Since X isNBAFR, by hypothesis (ii) we have that (3.7) holdsif

1 [t ) mx (u)
;/“ rx(u) ((,(_”_) Tmaln) d0)+ E[X)) du >0,

. c'(t) c'(0)
W) ey +my 0y~ e(0)+ EX) - !
rx ({])E(X] f"’((])
7 {0) + BE(X) T <(0) + B(X)’ (37)
BE(X)
i

which holds by (i). Hence the result follows.

Remark 3.14 Let X be a random variable having

1 1
mean residual life my(t) = P ,t>0andc(t) = .

t > 0. Then one can verify that X* is NBAFR. Hence,
condition (i) of Theorem 3.9 is a sufficient condition
but not necessary. That condition (ii) of Theorem 3.9
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cannot be dropped, can be seen by considering X as a
standard exponential random variable and

1
c(t) = m,t20. O

Corollary 3.3 If the random variable X is NBAFR,
then the random variable X* satisfying (2.2) is NBAFR
provided, for all t >0,
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c(t)
0] m isdecreasingint;

c'(r)
(i) m isdecreasingint; O

Remark 3.15 Example 3.1 can be considered as an
application of Theorem 3.9 and also of Corollary 3.3.o

Thefollowing theorem whose proof issimilar to that
of Theorem 3.9 shows that the model in (2.2) preserves
the NWAFR property.

Theorem 3.10 If the random variable X is NWAFR,
then therandomvariable X* satisfying (2.2) isNWAFR,
provided, for all t >0,

) | 0

W )" Ex)

. c'(t) c'(0)

() eyt my (1)~ c(0)+E(X) 0

Remark 3.16 Example 3.2, with c(t) asgivenin (3.5),

can be taken as an application of Theorem 3.10. 0
) 1+¢

Remark 3.17 Example 3.2 with ¢(t) = % t >0,

shows that condition (i) of Theorem 3.10 is a sufficient

condition but not necessary. That the condition (ii) of

Theorem 3.10 cannot be dropped, can be seen by taking
Example 3.2, with c(t) as defined in (3.6). O

Coroallary 3.4 If the random variable X is NWAFR,
then the random variable X* satisfying (2.2) isNWAFR
provided, for all t >0,

c(t
0) m isincreasingint;

(i) m isdecreasing int. 0

Example 3.4 Let X be arandomvariable as defined
inExample 3.2. Clearly XisNWAFR. Takec(t) asdefined
in (3.5). In Example 3.3, we see that both the conditions
of Theorem 3.10 are satisfied. Hence, by Corollary 3.4,
X* is NWAFR. O

4. CONCLUSION

In this manuscript, we study the properties of the
model m*(t) = c(t) + m(t), which may be considered asa
time-dependent additive MRL model. We have given
conditions under which m* () can be considered to be
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an MRL function of some random variable. We have
also studied the conditions under which the variable X*

(having MRL function m*) belongs to the ageing class
C when X belongsto the class C. To be specific, let x e

IFR such that x satisfies some property P. This means
that the set of random variables which belong to IFR
classsatisfying the property P, definesasubclassof IFR
class, cdl it C. Thentheresults studied in this manuscript
arethe closure properties of C (c IFR). With the help of
counterexamples we have shown that the ageing classes
like IFR etc. are not closed under the model discussed
whereas a subclass of each of these well known classes
are closed.
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