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ABSTRACT

Symbolic direct product of vectorsand direct product of matrices have been used to represent treatment combinations and effect
contrasts in 2"- factorial set-up. Relations with Hadamard matrices with the coefficient matrices of the factorial effects are
shown and also the inherent algebraic results are established for Yates algorithm. Also the two symbol orthogonal arrays
obtainable from control blocks of confounded 2" designs are demonstrated.

1. Introduction

Thisis an expository article with aview to provide
someinsight into two level factoria set-up. Theresults
are available in one or other form in literature. But an
attempt has been madeto discussthem under onegenera
set-up giving the mathematical basis to some usual
practices of computing the factorial effects and the
control blocks.

Consider the following 22 - factorial set-up with
factors A and A, where each factor has two levels
indexed by 0 and 1.

22 — Factorial set-up

Factors A A

0, 1) 0,1

The 22 level combinations can be obtained as
symbolic direct product of the vector (0, 1) with (0, 1)
i.e

(0,2)* (0,1) =(00, 10,01, 11) = (X, X,);

X, =0, 1forali

Levels

1.1
where‘*’ denotesthe symbolic direct product (SDP)

Thetreatment effect at thelevel combination (x,, X,
is denoted by t (x,, x,) or by a,'a;>. The vector of
treatment effectsin standard order, i.e., theorderin (1.1))
isgiven by

t ={1(00), t(10), t(01), t(11)}

= {aloazo, allazo’ alo%l, all%l}
=(1,a,a,aa) (1.2)
Here, (1.2) is written by assuming the treatment

Xy Xa x
symbol a,'a,* asproduct of two real numbers al1] and
agz wherex’sare playing therole of power. Ingeneral,

for 2"set-up, thelevel combinationsand treatment effects
on them can be written asfollows:
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Level combination:

(0,2)* (0,2) *...* (0,1) =(00, 10,01, 11) * (01) *...* (0,2)
= (000, 100, 010, 110, 001, 101, 011, 111) *.... * (O, 1).
=(00...0, 100...0, ...... ,111...1)

={(X, Xpeee sy X ); x=0,1i=12..n} (L3)
Treatment effects

={t(000...),t(10...0)....t (1, 1...1)}
={a’a’...a’%a'a’.a’.....,a* &%, ..ax}
=L a,a, a3, a, aa, ...... - N a) 1.9
(1.4) is written by dropping the letters with even
power. So the use of SDP gives the treatment effectsin
the same order asis obtained in the usual way of writing

the treatment effects by product of letters one after
another.

2. Factorial Effects

Thefactorial effectsare defined in thefollowing way.
Consider the 2° —factorial set- up with factorsasA and
A,. Theeffect of A, for changing level 0to 1 whenA is
fixed at the level O (called simple effect of A)) isgiven
by a'a’- a’a,. Similarly the simple effect of A, when
A, is at level 1is given by a'a'- ‘!, This can be
displayed as

Levelsof A, Simple effectsof A,
0 —810650 + all%o
1 _alanl + all%l

A, = Main effect (m.e) of A,
=total of thesimpleeffectsof A, over thelevelsof A,
= (_aloall+ 811650) + ('a10a11+ allazl)
=(-a’+a’) (a°’+4a))
=(-1+a)(1+a) (2.1
(2.1) isobtained from the usual practice of assuming

the treatment effects as product of powers of a's.
Similarly inthe sameway



A, =Main effect (m.e) of A,

= sum of the simple effects of A over the levelsA |
=(1+a)(-1+a) (22
A A,= Interaction effectsof A and A,

= Difference of the smple effectsof A at difference
level of A,

=(-1+a)(-1+a) (2.3)
| = Total of 22 treatment effects
=a‘a’+a’a’+as’'+a’a’
=1+ al) 1+ 32) (2.9)

Theresults (2.1) - (2.4) give an easy way of writing
the factorial effects though the factorizations have no
meaning. They should be expanded and treatment effects
areto be put in the corresponding level combinations.

Following the same artificial representation the
factorial effects in 2°— set-up can be written as A °A.°
for I, A*A°forthem.eof A, A°A ! for them.e of A,
and A 'A.! for the interaction effect of A A.. So, in

general, any effect can be denoted by A A2, where
o, =0, 1and i=1, 2. In tabular form, the effects can be
represented as:

Table2.1

(01, 01) Effects (A;' A3 )
00 ACAL=I
10 AMAL=A
01 ASAL=A
11 AMAL=AA,

From Table 2.1 and (2.1) - (2.4) we see that the
factorial effects can be expressed generally in terms of
the treatments effects as

APAT = {(=D)"a +a} {(-1)a; +a}}

1 1
DTy (D) a2y

.Y]:O .Y2:0
] ] (I=x)H0, (1-x5)
_ 0y (1= )+t (1-x5 X Xy
= Z Z (-1 T g (25)
,\']=0x2=0

In general for a 2" factorial set-up, it follows that
any factorial effect can be denoted by A?‘A;2 ...A:“
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(including the total) o, = 0,1; i =1,2,...,n and it can be

shownthat A[TA}2...A"™ can berepresented interms

of the treatment effects @, a,?...a. " ,x=0,1;i=1,2,

ATAL A% = Y Y LY (DR gt

% =0%x,=0 x

1 n=0

n

=11t

1
ntiil—xi) X
(- at} (2.6)
1=0

X.

3. Algorithm for expressing the factorial effects
in termsof treatment effects.

A factorial effect is said to be even (odd) if the
number of capital lettersin the effect is even (odd). In
2>-factorial set-up A=A 'A0 isan odd effect while the
effect A A=A 'A iseven. Consider thefollowing table.

Table3.1
Effect Nature of the FE Z“i
A =A'AY Odd 1+0=1
A,=ALA} Odd 0+1=1
AA=AA} Even 1+1+0 (mod2).

Generalizing the above fact it is easily seen that for

2n-factorial set-up, a FE A['AJ?... A" is odd if

n n

D ;=1 (mod2) andisevenif Y o, =0 (mod2).
i=1 i=1

Again the number of letters common between the FE

AP'AR .. A’ and thetreatment effect @,'a}?...a."
n

is given by zaixi aso/sand x'sare 0 or 1. So the
=

number of letterscommon between ATTA2. A" and

n
a'a,’..a)" isevenif » a;x; =0 (mod 2) and is
1

n
odd if zaixi =1 (mod 2). From (2.6) and the above
1

discussionsit followsthat the coefficient of thetreatment

effect @'a,>..a’™ in the FE A"A?. A" is
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()2 2 s (1Y 2 Thisis 1 if

2.%=0(1) (mod2)and Y ax,;= 0 (1) (mod2)
1 1

i.e. if the FE is even (odd) and the number of letters
common between the FE and the treatment effectiseven
(odd). We consider all the cases and construct the
following factorial table.

Table 3.2

Nature of the FE A{TATZ A’

between the FE and the

Number of letters common

Coefficient of @,"a,?...a " in

the expansion of AJ'AJ?. A"

treatment effect a,'a,...a."

Even (ZOL, =0, mod 2)

Even (Zoci X, = O,modz)
odd (¥ o x; =1,mod2)
Even (Zoci X, = O,modz)

odd (¥ o x; =1,mod2)

1) 1) =1
QUISIES
SUSIEE!
1) 1y =1

The above discussions give the underlying
mechanism of the usually practiced thumb rule of signs
in 2"- factorial set-up.

Alsofrom (2.6) it can be verified that any two distinct
FE's are mutually orthogonal. Consider two FE's

AT‘A??..A‘:ﬂ and A?‘Agz...AE“ . As they are

distinct, at least for one i, o # f3;. Without loss of
generality we assumethat o, = 0, 3; = 1. Then the inner
product of the coefficientsis given by

[T 3 () apt)

1=1 x]——O

= ]i[{(—l)0 (—1+1)}= 0

Also for (o, o, o) # (0, 0,..0) it can be easily
seen that the sum of the coefficients in the FE

AT'A;Z...A:“ is zero. So the factorial effect

Al'AT..A’" isatreatment contrast.

4. Relation between the coefficient matrix and
Hadamard matrix of order 2"

We consider the following table giving the
coefficient matrix in the 22- factorial set-up.
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Table 4.1
Treatment effects

FE a10a20 a11a20 310321 allazl
ALA L= 11 1 1
AMAL=A, -1 1 -1 1 |=A
AlAL=A, 1 1 1 1
AMI=AA, 1 1 A 1

Herewe seethat the elements of the coefficient matrix
A is+1or-1and any two rows and any two columnsare
orthogonal. Such a square matrix is called a Hadamard
matrix. Generalizing the above, it can be seen for the
2"- case that the coefficient matrix isaHadamard matrix
of order 2.

FE Treatment effects
1 [ aMa2 .i.,.a“x" .y
AlﬂlAzuz A “n - (_1)5“1'0‘%) =H

L

The coefficient (_1)2“1'@"%) of ala,”...a "in

ANA2 LA istheelementofH2n , aHadamard

matrix of order 2" in the (o, 0., ...., o)) th row and
(X3 X5 +.vry X)) th column.,



Note that the above Hadamard matrix is actually
givenby H, ® H, ® .... ® H, where ® denotes

11
Kronecker Product and H,, = {_1 1].
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5. Yates Algorithm

Thereisanother schematic method known as Yates
algorithm of obtaining thefactorid effectsin 2"- factoria
set-up intermsof the treatment effects. Thealgorithmis
demonstrated below :

Table 5.1 (2%- set-up)

Treatment effects Sep 1l Sep 2 FE
1 } 1+a, 1+a+a,+a,a, I
& 8,+8, -I+a-a,+a)3, Ay
& } a-1 } -la+a,+a3, A,
43 %8, T-a-a,+a)3, AlA,
Note that the elements in Stepl and Step2 are given

Where

respectively by

1+ 11 0 0y 1
+ 0O 0 1 1
dy T dydy _ 1 (5.1)
—a, +aya, 0 0 -1 1)M\aqa,
and
l+a,+a, +aa, 1 0 O2 1
—1—a1+a2+a1a2 B —1 1 O 0 ﬁl2
1— al - CIZ +6I16I2 0 0 —1 1 a1a2
(5.2)
Note that
| | 1 1
DIE_—]l—ll_ll®ll_H
D,)] |-1 =1 1 1| \=11 -1 1) 72
1 -1 -1 1
(5.3)
where
D, = Diag (1,1;1,1)
D, = Diag (-1,1;-1,1) (5.4)

Generdizing the above, we get for 2"- set-up theelements
a StepRas

D R
D t, R=1,2,...,n

RASHI 2 (1) : (2017)

(5.5)

D=Diag(1,1;1,1;...;1,1)

D* =Diag (-1, 1;-1, 1;....,-1, 1)

D'sare 2™ x 2" matrices each and t = (1, a,, a,a,,...,
a,a,....8,)" isthe vector of 2" treatment effects.

Note that

The above form of expression of Hzn is the basis of
Yates' algorithm.

6. Confounding
Thegenerd theory of confounding thefactorial effect
AMAL2 LA " istoallocate 2" treatmentsinto two
blocks B, and B, each containing 2" treatments, where
the treatmentsin B, and B, are given respectively by
B = { (X Xpe o X0 X+ 0L +0, X =0 (mod2)}
B, = {(Xp X5 XM 0L X+ OLX+ ... 400 X, =1 (Mod2)}
(6.2)
See that all the 2! treatments in the control block
B, are even with the confounded effect

ATA2 A "™ Also dll the treatments in B, are

odd with the confounded effect. Let alevel combination
(Xps Xppevennnn x,) € B,and another level combination (y,,
Youeernneeann Y,) € B, thenthelevel combination (x, +
Y XY, ..0X +Y,) mod 2 also belongsto B, because

iu]{xl+yl )=2t1lxl+z a,y,=I (mod2) ﬂsz a,x,=0.
=l i i i

Soall thetreatmentsin B, can be obtained by adding
any treatment (y,,Y,............ Y,) inB, toal treatments
inB,.
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Example6.1

Suppose A ALA, is to be confounded when a 23
experiment isconductedin 2 blocks. Seethat (000, 110,
011, 101) = (1, a a,, a,a,, & a;) are even with A A A,
So they congtitute the control block B,,. See that (000,
110, 011, 101) @ (100) = (100, 010, 111, 001) = (&, &,
a,, 8,3,8,) = B;*a,, which constitute the block B, .

In the above design A A A, is confounded with
blocks. This means that the orthogonal contrast
representing A;A,A; has expectation A,AA; + block
contrast.

Let y,, (X;, X, X) = observation in the i*" block
corresponding to the level combination

(X3 X5, Xg),1=0, 1

-m+b,+a'a’a’+e,

1.(.‘(])(2)(3)

(6.2)

where m = general effect, b, = i block effect, i= 0, 1
a,*'a,*?ax3 = treatment effect due to the level
combination (X,X,X,)

& (axaxd) = random error with usual assumption

E1Wo o0y * Yo(o10)t Yo(oony T Yoarry) = V1 o0y + Y1 (110)
+

Y1 00y * Y comn)]

=4 (b, —by) +AAA, (6.3)
FE A AJA, is not separately estimable. Linear

combination of block contrast andA A A isestimable.

On the other hand the expectation of observational
contrast for ME A, isgiven by

E{(-¥o 000) * Yo t10)~ Yo 1) * Yo o)) *

(Y1 000) = Y1 (010) ~ Y1 001y * Y1 cuan)}

= A, (6.4)
MEA, is estimable free of block contrast. So it is not
confounded.

7. Relations with group theory

Consider a 23-set-up and let the 2% combinations be
denoted by their treatment symbols. Therefore G, the set
of 8level combinationsisgiven by

G=(1 a, 8, aa, a; aa; aa; 33,3) (7.1)

Define the binary product * among the elements X,
y, € G wherethe operation is ordinary multiplication
with sguared |etters dropped. Note that

x*ye GV xyeG

(i x*y=y*x

(iii) x*1=1*x=xe G; ¥Yxe G

(iv) 3 ay € GforeveryxinGsuchthatx*y=y*
x=1
RASHI 2 (1) : (2017)

Therefore G is a commutative group with identity
element 1. Also every element isitsinverse.

Also note that the control block B, of section 6 is
aso asubgroup in G. The other block B, is obtained by
a applying the same operation * on the elements of B,
by any element of B,. So B, isa coset. Asthe group is
commutative, the right and left cosets are the same.

In general, in a (2",2%) confounded design the set G
of all 2" treatments from a commutative group and the
control block B, containing 2K trestmentsis asubgroup
G. The other (2X-1) blocks are cosets of B,inG

8. Relation with Orthogonal Arrays (OA) with two
symbolsin each row

An n x N matrix A with two elements 0 and 1 in
every row is said to be an orthogona array (OA) of
strength t (= 2) if for the choice of any t rows, all possible
2 vectors containing 0 and 1 occur an equa number
(A =1) of timesinthet x N sub-matrix ascolumns. This
isdenoted by OA [N, n, 2, 1]

Example 8.1

Consider the (23, 2) design confounding A, AA ;. By,

the control block is given by (1, aa,, a,a; aa,). We

represent the 4 level combinations as 4 columns of the
array A given by

A0 1 01
A=A,|0 1 1 0fwhichisanOA[4,3,2,2]
A0 0 11

3

Replace0'sby -1'sinA and adjoinarow (1,1, 1, 1)
and get

r 1 1 1

~l 3 =~ .
i =H=A ,,, Hadamard matrix

=l =L 4 d

Maximum number of rowsinon OA [N, K, 2, 2] is
N-1i.e. max k=N-1. Such an OA is called a saturated
OA. From such saturated two symbol array, an N x N
Hadamard matrix can alwaysbe constructed by the above
method.

Example 8.2

Consider the control block of the (24, 2) design
confounding A;A,A A .. The treatments combinations
arearranged in a4 x 8 array as before.



Ao 10101 01
g A0 1011010
Ao 0 1 11100
AJO 01 100 11

Seethat Bisan OA [8, 4, 2, 3]

Example8.3

The array obtained from the control block of (25,22)
design confounding A, AA,, A A A isgiven by

Ao 1 0101 01
AJJO T 1001 10
B,=A,|0 0 1 10 0 1 =0A[8,5 2 2]
AjJo 01 111 00
Ao oo 01 1 01

5

From the above examples we see that the control
block of a confounded (2", 2K) design always gives an
OA [N, n, 2, t] where N= 2"k and the strength t=
minimum number of letters in the confounded effects
minus one.
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9. Concluding Remarks

It is seen that the 2" factorial structure and the

factional designsthere on havevery interesting algebraic
and combinatorial properties.

For further studies the readers may go through the

‘Suggested Readings' listed below.
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