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ABSTRACT
Symbolic direct product of vectors and direct product of matrices have been used to represent treatment combinations and effect
contrasts in 2n - factorial set-up. Relations with Hadamard matrices with the coefficient matrices of the factorial effects are
shown and also the inherent algebraic results are established for Yates’ algorithm. Also the two symbol orthogonal arrays
obtainable from control blocks of confounded 2n designs are demonstrated.

1.  Introduction

This is an expository article with a view to provide
some insight into two level factorial set-up. The results
are available in one or other form in literature. But an
attempt has been made to discuss them under one general
set-up giving the mathematical basis to some usual
practices of computing the factorial effects and the
control blocks.

Consider the following 22 - factorial set-up with
factors A1 and A2 where each factor has two levels
indexed by 0 and 1.

22 – Factorial set-up

Factors A1 A2

Levels (0, 1) (0, 1)

The 22 level combinations can be obtained as
symbolic direct product of the vector (0, 1) with (0, 1)
i.e.

(0, 1) * (0, 1) = (00, 10, 01, 11)   = (x1, x2);

xi = 0, 1 for all i           (1.1)

where ‘*’ denotes the symbolic direct product (SDP)

The treatment effect at the level combination (x1, x2)
is denoted by t (x1, x2) or by . The vector of
treatment effects in standard order, i.e., the order in (1.1))
is given by

t = { t(00), t(10), t(01), t(11)}

= {a1
0a2

0, a1
1a2

0, a1
0a2

1, a1
1a2

1}

= (1, a1, a2, a1a2)  (1.2)

Here, (1.2) is written by assuming the treatment
symbol  as product of two real numbers  and

  where x’s are playing the role of power. In general,
for 2n set-up, the level combinations and treatment effects
on them can be written as follows :

Level combination :
(0, 1) * (0, 1) *…* (0, 1) = (00, 10, 01, 11) * (01) *…* (0,1)
= (000, 100, 010, 110, 001, 101, 011, 111) *…. * (0, 1).
= (00...0, 100...0, ……, 111…1)
= {(x1, x2…., xn); xi = 0, 1; i =1, 2….n}   (1.3)
Treatment effects

= {t (000…), t (10…0)….t (1, 1…1)}
= {a1

0 a2
0 ….an

0, a1
1 a2

0.. an
0,….., a1

x
1 a2

x
2 …an

x
n}

= (1, a1, a2, a1a2, a3, a1a3, ……, a1a2.......an) (1.4)
 (1.4) is written by dropping the letters with even

power. So the use of SDP gives the treatment effects in
the same order as is obtained in the usual way of writing
the treatment effects by product of letters one after
another.
2. Factorial Effects

The factorial effects are defined in the following way.
Consider the 22 – factorial set- up with factors as A1 and
A2. The effect of A1 for changing level 0 to 1 when A2 is
fixed at the level 0 (called simple effect of A1) is given
by a1

1a2
0 - a1

0a1
2. Similarly the simple effect of A1 when

A2 is at level 1is given by a1
1a2

1 - a1
0a1

2. This can be
displayed as

Levels of A2 Simple effects of A1

0 –a1
0a2

0 + a1
1a2

0

1 –a1
0a2

1 + a1
1a2

1

A1 = Main effect (m.e) of A1

     = total of the simple effects of A1 over the levels of A2

= (-a1
0a1

1 + a1
1a2

0) + (-a1
0a1

1 + a1
1a2

1)
= (-a1

0 + a1
1) (a2

0 + a2
1)

= (-1 + a1) (1 + a2) (2.1)
(2.1) is obtained from the usual practice of assuming

the treatment effects as product of powers of a’s.
Similarly in the same way
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A2 = Main effect (m.e) of A2

= sum of the simple effects of A2 over the levels A1

= (1 + a1) (-1 + a2) (2.2)

A1A2 = Interaction effects of A1 and A2

= Difference of the simple effects of A1 at difference
level of A2

= (-1 + a1) (-1 + a2)  (2.3)

I = Total of 22 treatment effects

  = a1
0a2

0 + a1
1a2

0 + a1
0a2

1 + a1
1a2

1

  = (1 + a1) (1 + a2) (2.4)

The results (2.1) - (2.4) give an easy way of writing
the factorial effects though the factorizations have no
meaning. They should be expanded and treatment effects
are to be put in the corresponding level combinations.

Following the same artificial representation the
factorial effects in 22 – set-up can be written as A1

0A2
0

for I ,  A1
1A2

0 for the m.e of A1, A
0A2

1 for the m.e of A2
and A1

1A2
1 for the interaction effect of A1A2. So, in

general, any effect can be denoted by , where
αi = 0, 1and i=1, 2. In tabular form, the effects can be
represented as:

Table 2.1

(α1, α2) Effects ( )

0 0 A1
0A2

0 = I

1 0 A1
1A2

0 = A1

0 1 A1
0A2

1 = A2

1 1 A1
1A2

1 = A1A2

From Table 2.1 and (2.1) - (2.4) we see that the
factorial effects can be expressed generally in terms of
the treatments effects as

  = 

= 

= (2.5)

In general for a 2n- factorial set-up, it follows that

any factorial effect can be denoted by 

(including the total) αi  = 0,1; i =1,2,…,n and it can be

shown that can be represented in terms

of the treatment effects , xi = 0,1; i = 1, 2,

….., n as

 = 

= (2.6)

3. Algorithm for expressing the factorial effects
in terms of treatment effects.

A factorial effect is said to be even (odd) if the
number of capital letters in the effect is even (odd). In
22-factorial set-up A1 = A1

1A2
0 is an odd effect while the

effect A1A2 = A1
1A2

1 is even. Consider the following table.

Table 3.1

Effect Nature of the FE

A1 = A1
1A2

0 Odd 1+0=1

A2 = A1
0A2

1 Odd 0+1=1

A1A2 = A1
1A2

1 Even 1+1+0   (mod2).

Generalizing the above fact it is easily seen that for

2n-factorial set-up, a FE is odd if

 (mod 2) and is even if  (mod 2).

Again the number of letters common between the FE

 and the treatment effect 

is given by as αi’s and xi’s are 0 or 1. So the

number of letters common between  and

 is even if  (mod 2) and is

odd if (mod 2). From (2.6) and the above

discussions it follows that the coefficient of the treatment

effect  in the FE  is

Das et al.
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. This is 1 if

 (mod 2) and  (mod 2)

i.e. if the FE is even (odd) and the number of letters
common between the FE and the treatment effect is even
(odd). We consider all the cases and construct the
following factorial table.

Table 3.2

Nature of the FE Number of letters common Coefficient of in

between the FE and the the expansion of 

treatment effect 

Even Even 

Even Odd 

Odd Even 

Odd Odd 

The above discussions give the underlying
mechanism of the usually practiced thumb rule of signs
in 2n- factorial set-up.

Also from (2.6) it can be verified that any two distinct
FE’s are mutually orthogonal. Consider two FE’s

 and . As they are

distinct, at least for one i, αi ≠ βi. Without loss of
generality we assume that αi = 0, βi = 1. Then the inner
product of the coefficients is given by

=  = 0

Also for (α1, α2…. αn) ≠ (0, 0,..0) it can be easily
seen that the sum of the coefficients in the FE

is zero. So the factorial effect

 is a treatment contrast.

4. Relation between the coefficient matrix and
Hadamard matrix of order 2n

We consider the following table giving the
coefficient matrix in the 22- factorial set-up.

Table 4.1
Treatment effects

FE a1
0a2

0 a1
1a2

0 a1
0a2

1 a1
1a2

1

A1
0A2

0 = I  1 1 1 1

A1
1A2

0 = A1 -1 1 -1 1 = A

A1
0A2

1 = A2 -1 -1 1 1

A1
1A2

1 = A1A2 1 -1 -1 1

Here we see that the elements of the coefficient matrix
A is +1 or -1 and any two rows and any two columns are
orthogonal. Such a square matrix is called a Hadamard
matrix. Generalizing the above, it can be seen for the
2n- case that the coefficient matrix is a Hadamard matrix
of order 2n.

FE              Treatment effects

The coefficient  of in

 is the element of , a Hadamard
matrix of order 2n in the (α1, α2, …., αn) th row and
(x1, x2, …., xn) th column.
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Note that the above Hadamard matrix is actually
given by H2  H2 ….. H2 where denotes

Kronecker Product and H2 = .

Note that the elements in Step1 and Step2 are given
respectively by

(5.1)

and

(5.2)
Note that

(5.3)

where

D1 = Diag (1,1;1,1)

D2 = Diag (-1,1;-1,1) (5.4)
Generalizing the above, we get for 2n- set-up the elements
at Step R as

t,  R = 1, 2, …,n (5.5)

Where
D = Diag (1, 1; 1, 1;…; 1,1)
D* = Diag (-1, 1;-1, 1;….,-1, 1)
D’s are 2n-1 × 2n matrices each and t = (1, a1, a1a2,…,
a1a2….an)´ is the vector of 2n treatment effects.
Note that

The above form of expression of  is the basis of

Yates’ algorithm.

6. Confounding
The general theory of confounding the factorial effect

 is to allocate 2n treatments into two
blocks B0 and B1 each containing 2n-1 treatments, where
the treatments in B0 and B1 are given respectively by
B0 = {(x1,x2,….xn)/α1,x1+ α2x2+……+αnxn =0 (mod2)}
B1 = {(x1,x2,….xn)/α1,x1+ α2x2+…+αnxn =1 (mod2)}

(6.1)
See that all the 2n-1 treatments in the control block

B0 are even with the confounded effect

. Also all the treatments in B1 are

odd with the confounded effect. Let a level combination
(x1, x2,…….xn) B0 and another level combination (y1,
y2…………,yn)  B1 then the level combination (x1 +
y1, x2 + y2 , …,xn + yn) mod 2 also belongs to B1 because

So all the treatments in B1 can be obtained by adding
any treatment (y1,y2…………,yn) in B1 to all treatments
in B0.

5. Yates’ Algorithm
There is another schematic method known as Yates’

algorithm of obtaining the factorial effects in 2n- factorial
set-up in terms of the treatment effects. The algorithm is
demonstrated below :

Table 5.1 (22- set-up)

Treatment effects Step 1 Step 2 FE
1 1+a1 1+a1+a2+a1a2 I
a1 a2+a1a2 -1+a1-a2+a1a2 A1
a2 a1-1 -1-a1+a2+a1a2 A2
a1a2 a1a2-a2 1-a1-a2+a1a2 A1A2

Das et al.
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Example 6.1
Suppose A1A2A3 is to be confounded when a 23

experiment is conducted in 2 blocks. See that (000, 110,
011, 101) = (1, a1a2, a2a3, a1a3) are even with A1A2A3.
So they constitute the control block B0. See that (000,
110, 011, 101) ⊕ (100) = (100, 010, 111, 001) = (a1, a2,
a3, a1a2a3) = B0*a1, which constitute the block B1.

In the above design A1A2A3 is confounded with
blocks. This means that the orthogonal contrast
representing A1A2A3 has expectation A1A2A3 + block
contrast.

Let yi, (x1, x2, x3) = observation in the ith block
corresponding to the level combination

(x1, x2, x3), i=0, 1

= (6.2)

where m = general effect, bi = ith block effect, i= 0, 1
a1

x1a2
x2a3

x3 =  treatment effect due to the level
combination (x1x2x3)
ei, (x1x2x3) =  random error with usual assumption
E [(y0 (100) + y0 (010) + y0 (001) + y0 (111)) – (y1 (000) + y1 (110)
+
y1 (101) + y1 (011))]
= 4 (b1 – b0) + A1A2A3 (6.3)

FE A1A2A3 is not separately estimable. Linear
combination of block contrast and A1A2A3 is estimable.

On the other hand the expectation of observational
contrast for ME A1 is given by
E{(-y0 (000) + y0 (110) - y0 (011) + y0 (101)) +
                     (y1 (000) – y1 (010) – y1 (001) + y1 (111))}
                      =  A1 (6.4)
ME A1 is estimable free of block contrast. So it is not
confounded.

7. Relations with group theory
Consider a 23-set-up and let the 23 combinations be

denoted by their treatment symbols. Therefore G, the set
of 8 level combinations is given by

G = (1, a1, a2, a1a2, a3, a1a3, a2a3, a1a2a3) (7.1)
Define the binary product * among the elements x,

y,   G where the operation is ordinary multiplication
with squared letters dropped. Note that

(i) x * y  G  x, y  G
(ii) x * y = y * x
(iii)  x * 1 = 1 * x = x  G ; x  G
(iv)  a y  G for every x in G such that x * y = y *

x = 1

Therefore G is a commutative group with identity
element 1. Also every element is its inverse.

Also note that the control block B0 of section 6 is
also a subgroup in G. The other block B1 is obtained by
a applying the same operation * on the elements of B0
by any element of B1. So B1 is a coset. As the group is
commutative, the right and left cosets are the same.

In general, in a (2n,2k) confounded design the set G
of all 2n treatments from a commutative group and the
control block B0 containing 2n-k treatments is a subgroup
G. The other (2k-1) blocks are cosets of B0 in G.

8. Relation with Orthogonal Arrays (OA) with two
symbols in each row

An n × N matrix A with two elements 0 and 1 in
every row is said to be an orthogonal array (OA) of
strength t (≥ 2) if for the choice of any t rows, all possible
2t vectors containing 0 and 1 occur an equal number
(λ ≥ 1) of times in the t × N sub-matrix as columns. This
is denoted by OA [N, n, 2, t]

Example 8.1
Consider the (23, 2) design confounding A1A2A3. B0,

the control block is given by (1, a1a2, a2a3, a1a3). We
represent the 4 level combinations as 4 columns of the
array A given by

A which is an OA [4, 3, 2, 2]

Replace 0’s by -1’s in A and adjoin a row (1, 1, 1, 1)
and get

 = H=A4×4 Hadamard matrix

Maximum number of rows in on OA [N, K, 2, 2] is
N-1 i.e. max k=N-1. Such an OA is called a saturated
OA. From such saturated two symbol array, an N × N
Hadamard matrix can always be constructed by the above
method.

Example 8.2
Consider the control block of the (24, 2) design

confounding A1A2A3A4. The treatments combinations
are arranged in a 4 ×  8 array as before.

2n - Factorial Set Up – Some Aspects
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See that B0 is an OA [8, 4, 2, 3]

Example 8.3
The array obtained from the control block of (25,22)

design confounding A1A2A3 , A3A4A5 is given by

 

= OA [8, 5, 2, 2]

From the above examples we see that the control
block of a confounded (2n, 2k) design always gives an
OA [N, n, 2, t] where N= 2n-k and the strength t=
minimum number of letters in the confounded effects
minus one.

9. Concluding Remarks
It is seen that the 2n factorial structure and the

factional designs there on have very interesting algebraic
and combinatorial properties.

For further studies the readers may go through the
‘Suggested Readings’ listed below.
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