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ABSTRACT

A vertical line, which renders equal the areas of two regions bounded by itself and the empirical cumulative distribution
function of either thedata or their appropriate transfor mations, depicts the mean, the mean deviation, the mean square deviation
or the standard deviation. Here, we extend the vertical line method to visualize all statisticsinvolved in the analysis of variance
method.
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1. INTRODUCTION

To compare the means of a continuous variable X across k > 2 subgroups, the most prevalent technique is the
one-way analysis of variance (ANOVA). The method works best under the assumption that the subgroup data are
drawn randomly and independently from the respective subpopulations, which are normally distributed with the
same variance 62. The method, first introduced by Fisher (1925), is now well-known. For detailed exposition, see
Dudewicz and Mishra (1988), for example. The summary below introduces the notation and initializations.

Essentially, in the ANOVA method we decompose the (corrected) sum of squarestotal (SST) in the entire data
(all subgroups combined) into two statistically independent (due to Cochran’stheorem) components: (1) the sum of
squares between (SSB) subgroups, and (2) the aggregated sum of sguares within (SSW) all subgroups; that is,
SST = SSB + SSW. Then we calculate the mean square between, MSB = SSB / (k-1); the mean square within,
MSW = SSW / (n-k); and finally the F-statistic, F = MSB / MSW. The M SW has expectation 62, whilethe M SB has
expectation 62 plusafraction 1/(k-1) of the sum of squares of deviations of subgroup means from the overall mean.
Therefore, the null hypothesis of equal subgroup meansisrejected if the computed F-statistic istoo large.

Although the ANOVA method is familiar and commonplace, it is surprising that the literature does not offer a
visual representation of it. We hopeto fill thisgap. To present the main results, we briefly review the visualization of
the mean, the mean deviation (MD), the mean square deviation (M SD) and the standard deviation (SD) of asingle
sample in Section 2. Details are found in Sarkar and Rashid (2016 d). In Section 3, we apply the visualization
technique on each subgroup data and also on the collection of all k subgroup meansto visualize a (scaled) SSB. In
Section 4, we visualize a (scaled) SSW and a (scaled) SST; and hence, the F-statistic. Section 5, extends the
visualization method to a two-way ANOVA without interaction. Section 6 gives a few concluding remarks and
directions of future research. All figuresin this paper are drawn using the statistical software R.

2. VERTICAL LINESDEPICTING MEAN, MD, MSD AND SD
The mean isthe most common measure of center. See Pollatsek et al. (1981) and Lesser et al. (2014). The mean

of aset of n numbers{x,, X,, ....., x.} is defined by f:lzxf (1)
no5

The mean isinterpreted as the location of afulcrum that balances the dot plot. See Watier, et al. (2011). Figure
1 depictsthe dot plot of the datain Example 1 and its mean.

Example 1. The number of trips an ambulance made on five daysare: 7, 4, 8, 3, 9.
Figure 1. The mean is shown as afulcrum that balances the dot plot (in Example 1)
[ . * IA . * . I
2 4 6 8 10

An dternativeinterpretation of the mean involvesthe empirical cumulative distribution function (ECDF) of the
data, which is a step function given by F(x) = N(x)/n, where N(x) is acount of data values that are no more than x.
seefigure 2.
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Figure 2. The mean is shown as avertical line PQ that renders equal the two shaded areas
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Consider the inverse-ECDF (or rather the inverse mapping) x = F (y), y € [0,1] . Note that

1 I/'n 1 1

X X, _ [—
IF "(y) dy= IF ') dy +..+ IF 'W)dy="L+. .+ =X :fx dy
0 0 1-1/n n n 0

In other words, the sum of the areas of rectangles R, R,, ... R, each of height 1/n, equalsthe areaof onesingle
rectangle OPQR (of height 1) bounded by y=0, x=0, y=1 and x=x .

Therefore, the mean can be visualized as a vertical line PQ that equalizes the areas of two regions (shown in
figure 2 by two types of shadings) bounded by thevertical lineitself, thetwo horizontal linesy=0andy =1, andthe
ECDF F. This vertical line PQ, representing the mean, can be found by using an Euclidean construction given in
Sarkar and Rashid (2016 d).

In figure 3 we show the MD and the MSD of a set of numbers as vertical lines. We also show the root MSD
(RMSD) and SD as the mean proportional between two segments.

The deviations of the n given numbers from their mean are d; =| x; — x|. The average of all deviations from the
mean is called the MD, and is given by

1 1
MD = —¥isqlx — x| = -%i, d; 2
TovisualizetheMD, whichisan average, wefirst construct the ECDF G of all these deviations, by reflecting the

portion of F to theleft of thevertical line x=x at the mean about thisline, with thereflection falling to theright side
of theline. Theresulting rectangles of height 1/n to the right of the mean, when sorted from the smallest (in width)
at the bottom to the largest at the top, yield G. Seethe dashed stepsin figure 3. To find the M D, we search for another

vertical line (the dashed vertical line d =d infigure 3) that equalizesthe areasto itsleft and toitsright and bounded
by G and horizontal linesy=0andy = 1.

Figure 3. The dotted ECDF G of deviationsyieldsthe MD, and the solid ECDF H of scaled squared deviations
yieldsthe RMSD § = +/V.R andthe SD s= ,/o.V.R , where o= n/(n — 1)
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Let us next review the geometric visuaization of the MSD and the SD, all shown in figure 3. The sample
variance and the sample M SD of the set of humbers are defined by

. 1 —
Variance = s2 = EZ?ﬂ(xi —x)? 3
and
1 —
MSD =~ 3L, (x; — %)° @)

The sample varianceisjust amultiple o = n/(n — 1) of the sample MSD, with interrelation given by

n . ~
s?=—35?=qa§? (5)
n-1

Taking the positive square roots of (3) and (4), we obtain the sample SD Sand the sample RMSD § respectively.
For variousinterpretationsof § and s, see Sarkar and Rashid (2016 a—). For aEuclidean geometric visualization of
§ and's, detailed in Sarkar and Rashid (2016 d), we construct the ECDF H of (scaled) squared deviationsasexplained
below.

The ECDF G of thedeviations, formacollection R of rectangleswhose widths equal the deviations and heights
equa 1/n. We transform each rectangle in & by changing only its width, but keeping it left aligned at d = 0 and
maintaining its height unaltered asfollows:

Choose Rto be a suitable positive magnitude (for example, let Rbethe largest deviation from the mean), and fix
it. Let d bethe width of any onerectanglein &. We construct the third proportional to Rand d; that is, wefind v such
that R: d =d: v. Thus, arectangle of width d changesinto anew rectangle of width v = d? / R. When we apply this

width-transformation to each rectangle in &, using the same R, we obtain the ECDF H of the scaled (that is, divided
by R) squared deviations. Henceforth, the horizontal axis also represents v = d?/R.

Over H infigure 3, we superimposethevertical line v=v that equalizesthe areas of the shaded regionstoitstwo
sides and bounded by itself, two horizontal linesy =0, y = 1 and H. Then the vertical linev=¥v representsthe scaled

MSD, §2 /R . Fi nally, to obtain the (unscaled) RM SD, we construct the mean proportional between v and R, as
explained in the next paragraph, since

_ 1 n df 1 n
ViR = —Z— R = —de = RMSD (6)
nia R n &

=1

Indeed, to construct the mean proportional /ah between a and b (with a> b > 0), we draw aright triangle with

hypotenuse (a + b) / 2 and oneleg (a—b) / 2. Then the other leg of that right triangle has length \/ab. Such aright
triangle, showing the mean proportional between ¥ and R, isdepicted (with asolid hypotenuse) bel ow the horizontal
axisin Figure 3.

Also, infigure 3, if wejoin R =(0, 1) to (v, 1/n) by aline and extend it to meet the horizontal axis, we obtain a

5 2
scaled variance % =qv = %. The mean proportional between o and R gives the (unscaled) SD s. See the
other triangle (with a dotted hypotenuse) below the horizontal axisin figure 3.
Expression (6) guarantees that we can choose Rto be any arbitrary positive number sinceits effect iseventually
eliminated, and we obtain the unscaled RMSD § and the unscaled SD s.

However, to avoid needing additional space to draw H and to ensure precision in drawing, we recommend
choosing R to be the largest deviation from the mean. Alternatively, if one chooses R to be the MD, the above

described geometric visualization also vividly demonstratesthat s = § =2 MD .

3. SUM OF SQUARESBETWEEN

In the one-way ANOVA set up, from k subpopul ations we have drawn k independent samples of sizesn,, n,, ...,
n, respectively. Letn=n, +n, + ... + n, bethetotal samplesize. L et usdenotethe X valuesin subgroupi (1< i < K)
by {xi'j; j=1,2, .., n}. Consider example 2.

RASHI 3 (1) : (2018) 3
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Example 2. Students from three high schools participated in amath contest, and their scores (ordered from the
lowest to the highest) are asfollows:

Group 1 School A 70, 88, 90, 96
Group 2 School B 66, 72, 90
Group 3 School C 67, 75, 80, 88, 90

Weareinterested infinding out if thereisasignificant difference among the schoolsin terms of the mean scores
obtained by its participants. We summarize the information within each school by reporting their sample sizes,
meansand RMSD’s:

n, = 4,%; = 86,5, = V94; n, = 3,%, = 76,5, = V104; n; = 5,%; = 80,35 = V71.6
We begin by showing the summary statistics in figure 4, using the methods of section 2. Note that we have
stacked the CDF's of the subgroups and rescaled their heights (proportionally to the sample sizes) so that their total

height isone. Also, we have depicted each RM SD asthelength of an arrow drawn at the top of each CDF proceeding
to theright of the respective mean vertical line.

Figure 4. Scaled CDF's, means and RM SD’s of scores from three schools (in example 2)
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Any standard statistical software package will produce a one-way ANOVA table. For example, using R, we
obtain:
Table 1. One-way ANOVA for example 2

Sources Df SS MS F p-value
School

(Between) 2 180 900 0.774 0.489
Within 9 1046 116.2 -

Wewant to visualize all statisticsinvolved in the one-way ANOVA including scaled versions of SSB and SSW,
and the (unscaled) F-statistic. The last two items require the subgroup RMSD’s, and will be dealt with in section 4.
In this section, we utilize the subgroup means and describe in the next three paragraphs a geometric visualization of
(ascaled) SSB defined by

SSB = Xiz i (¥; — X)? )
First, wedraw (seefigure 5a) the' ECDF’ Fz of X;. Itisa‘step function’ with step height % at the group mean

x; . Indeed, Figure 5aisobtained from figure 4 by keeping only the vertical line segmentsrepresenting the subgroup
means. Note that the stepsin figure Saare not sorted from the shortest at the bottom to the widest at the top, nor are
they of equal heights. Still, the methods of Section 2 continue to work. To visualize the overall mean, we simply
draw avertical line on to this ECDF Fy that equalizes the areas to its | eft and right and bounded by itself, y = 0,

y=1and Fg. Of course, this vertical line must be drawn at the weighted average of X; given by X = E‘:l % X

(8)
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Next, we construct (seefigure 5b) the ECDF G . of deviationsof x;'sfrom )__c by reflecting the portion of Fz tothe

left sideof thevertical linex= )__c about thisline, with thereflection falling to theright side, and thereafter (optionally)
sorting the rectanglesfrom the smallest (in width) at the bottom to thelongest at the top, and changing the horizontal

axisto show J, =X — }‘ . We obtain the MD of X, from )__c by drawing another vertical line on to G, to equalize the

areasto its |eft and right. Again, this vertical line must be drawn at the weighted average of d,’sgiven by

vk MT vk Mo =
d= izlg'di* i=1ﬁ'|xi_x| 9)

Finally, (seefigure 5c) choose asuitable scale R (our choiceisthelargest deviation d alternatively, onecan

max '’

choose the MDd and obtain the third proportional to each deviation, using the method illustrated in Figure 3. Thus
we obtain the ‘ECDF H, of the scaled squared deviations y’s. Superimposing a vertical line that equalizes the

areasto itsleft and right and bounded by y =0,y =1 and H, , we can visualize SSB/(nR), since

=_ini B _i ; diz_ini (x? —%)* SSB
v_,ln Vi = n R Lin R "~ nR
i=

i=1 =1

Figure5. The group meansin Example 2 yield (a) the overall mean )__c (b) theMD d of the deviations of group

= = SSSB
means from x, and (c) ascaled SSB v= R where R=max d,
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4. SUM OF SQUARESWITHIN AND F-STATISTIC

In this section we utilize the subgroup RMSD’s s,'s to obtain (a scaled) SSW, which is the sum of the total
squared deviations within each subgroup, defined by

SSW =X, XL, (i — %) = Ty n8f (10)

RASHI 3 (1) : (2018) 5
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Below we describe a geometric visualization of ascaled SSW and the (unscaled) F-statistic. We also visualize
the coefficient of determination, which is the proportion of total variation in X-values attributed to the ANOVA
model.

In figure 6, we first redraw figure 5(c); and then for eachi (1<i<k), we draw arectangle of height n;/n and
width 5, carefully right-aligning it at ¢ = 0 and positioning it directly to theleft of the rectangle of height n,/n and
width d; = |%; — %|on theright side of 4 = 0. We treat the horizontal axis as positive in both the right and the left
directions.

Next, choose asuitablescale R (our choiceisthelargest RMSD or max §;; alternatively, one can choose the same
Rchosen in the previous section), and obtain the third proportional to each RMSD s; (the first number always being

R). Thus, for each i, we obtain a new rectangle (right-aligned at 4 = 0 and with a dashed |eft boundary) of height
n/n and widthw, =57 / R. Then wefind the (dashed) vertical line y = i that renders equal the areasto itsleft and

right (as shaded in Figure 6) depicting SSW/(zR), since

Figure6. Thegroup RMSD’sin example 2, shown to theleft of they-axis, yield ascaled SSW as 5 = SSW/(nR),

where R = max §;
Y
N

| R
1.0
0.8 Group 1
I
T
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04 — i i
: |
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Finally, to visualize the F-statistic, we rewriteit asfollows (using =R /R ) :
R SSB - n—k
MSB SSB n—k JF nmR n—k BV —— N
F - = . — . — =—, say 11
MSW  SSW k-1 SS\_N ki—21 W—k_l D (11)
nR n

We construct (i) the numerator N and (ii) the denominator D in (11) by drawing a sequence of lines
(seefigure7):

(i) Wedraw alinel, joining (R, 0) and (R, 1), and let it intersect the y-axis at |. We draw alinel, joining

(v, 0) and I, and extend it to meet the horizontal liney = 1 at H. From H we drop a perpendicular 5

SSB

meeting the horizontal axisat J. Then segment OJhaslength v = =¥ = —. Wedraw ahorizontal line

R
R
h,, through B = (0, (n—Kk)/n), and alinel,joining O = (0, 0) to H = (v 1) cutting h_, at A. Segment AB
haslength N.
(i) We draw ahorizontal line h,_, through M = (0, k-1)/n), and alinel joining O = (0, 0) to W = (i, 1)

cutting h,_, at L. Segment LM haslength D. TheratioAB : LM, whichisfreeof Rand R, isthe F-statistic
=0.7744.

RASHI 3 (1) : (2018) 6
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Figure 7. Visualizing the F-statistic as aratio AB : LM (for the data in example 2). Also, one can visuaize
MSW =6 asthe mean proportional between OS and OR
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Additionally, we can visualize the root MSW (RM SW), which is an estimate of the common population SD ¢, as
follows: Join (0, 1) to Z= (i, k/n) by alinel, and extend it to cut the horizontal axes at S. Segment OS has length
i n/(n—k). Taking the mean proportional between OS and OR (as shown in figure 3) one can find yMSW =6.

Finally, we can also visualize the (scaled) SST and the (unscaled) coefficient of determination of the ANOVA
model. Recall that we have complete freedom to choose R and R as we please. In case we choose R = R, we can

visualize SST/(nR) as SSB/(nR) + SSW/(nR) = v + . However, evenwhen R # R, we have shown in figure 7 how

to construct segment OJ of length fv = Ro=22 So, we can visualize SST/(nR) as [3; + . The coefficient of

; nRk
determination SSB/SST can be visualized as Bv: (B:+ ﬁ-).

Let us close this section by exhibiting in one picture how to obtain the F-statistic starting from the subgroup
means and the RMSD’s. To avoid repetition, we do so after modifying example 2.

Example 3. Consider amodification of the datain example 2. Suppose that upon reeval uation of contest papers,
the scores of each participant in School B decreased by 10, in School C the scoresincreased by 6, and in School A
they remained unchanged. Then the summary statisticsare:

How did the F-statistic change? Using R, we show the new resultsin table 2.
Table 2. One-way ANOVA for example 3

Sources Df SS MS F p-value
School

(Between) 2 900 450.0 3.872 .0612
Within 9 1046 116.2 -

To visualize the F-statistic, note that even though some within group means have changed, the total score of all

12 participants (and hence the overall mean score) has not changed; we still have ¥ =81. Also, since the spread
within each subgroup is unaltered, the SSW remains unchanged. However, the subgroup means have become more
spread out from the overall mean. In fact, the SSB hasincreased fivefold, and so has the F-statistic. See Figure 8.

Figure 8. (a) The group meansin example 3 yield the MD d and the scaled SSB, v = SSB/(nR) with R = max

|f,- *;|, on the right side of the vertical axis. The group RMSD’s yield a scaled SSW, = SSW/(nR) with R =
maxs;, on the left side of the vertical axis.

(b) The F-statistic isthe ratio AB : LM ; 6 =/MSW is the mean proportional between OS and OR ; and the
coefficient of determination SSB/SST istheratio B::(B?+ ﬁ-).

RASHI 3 (1) : (2018) 7
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5. TWO-WAY ANOVAWITHOUT INTERACTION

Suppose that a randomized block design is used to assign treatments. Within each block, the same number of
units — chosen randomly — are assigned to each treatment. Assume that there is no interaction between block effect
and treatment effect. Then a two-way additive ANOVA model is applicable. This model tests the significance of
treatment effect by first removing block effect from each response, and then applying a one-way ANOVA to the
adjusted responses (after removing block effects). Weillustrate the visualization of the F-statistic for testing treatment

effect in atwo-way additive ANOVA model using the datain example 4.

Example 4. Which of four methods of winding six strands of wire into a rope gives the best tensile strength
(which isthe heaviest load carried by the wire just before it breaks)? An experiment is conducted to measure the
tensile strength of ropes made by each of four methods (a = 4) using wiresfrom three different suppliers (b=3). The
experiment being time consuming and destructive, is not replicated. The total sample size isn = ab = 12.

Letx

table é shows the data, and table 4 gives the results of atwo-way ANOVA (without interaction) using R:
Table 3. Tensile strength of ropes made by four methods using wires from three suppliers

Tensile

Srength Method 1 Method 2 Method 3 Method 4
Supplier 1 70 67 61 66
Supplier 2 95 65 64 88
Supplier 3 93 69 70 80
Table 4. Two-way ANOVA (without interaction)

Sources Df SS MS F p-value
Supplier (Block) 2 384 192 3.84 .0844
Method (Treatment) 3 870 290 5.80 .0331
Residua 6 300 50 -

=1,2,3;j=1, 2, 3, 4) denote the tensil e strength of arope made of wires from Supplier i using Method j.

RASHI 3 (1) : (2018)
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We explain below how to visualize (some of) the statistics in the above two-way ANOVA table.

Before determining whether the four methods (levels of Factor A) result in significantly different tensile strength
(responsevariable), we must first eliminate the variation dueto supplier (block) effect. So, first we depict thetensile
strengths as vertically stacked rectangles (of height 1/n) of various widths, sorted by block. Using the vertical line
method, we depict in figure 9(a) the block means and the overall mean. Note that the overall mean is not only the
simple average of all measurements, but also the (simple) average of the block means (since the block sizes are
equal). Next, we depict in figure 9(b) ascaled sum of squares due to blocks, SSB/(nR), where we choose R; asthe
largest block deviation, as explained in section 4.

Figure9. Responseswithin each block (supplier) yield block means, overall mean, block effects, block deviations,
and scaled SSB, where the divisor R; isthe largest block deviation

Overall mean
1

’J Supplier 3
L‘ Supplier 2

[:—I Supplier 1
X
[ [ 74 [ I I
60 70 80 90 100
(a)
y
A
1
3 |
i I
! | Supplier3
' I
X I
1
L 1
i I
; I
: | Supplier2
i I
! I
|
b Supplier 1
i
[ I | T
12 -8 -4 0 4 8 12
SSBfnRs Rs

(b)

Thereafter, we remove the block effect (the within block mean tensile strength minus the overall mean) from
each measurement. That is, we replace each tensile strength measurement X by the block-adjusted measurement

Yiji=Xiji— (Y,- = x] . Geometrically, it isequivalent to shifting all within block responseseither | eft or right so that the
corresponding blockmean-vertical-linefalls exactly on the overall-mean-vertical-line. Thiswe do for each block as
shown in figure 10(a).

Next, in figure 10(b), we rearrange the block-adjusted responses—this time sorted by treatment (method)—in
preparation for carrying out aone-way ANOVA to study the treatment (method) effect. The (block-adjusted) treatment
means are shown in Figure 10(b). Note that the overall mean isstill unchanged, sincethetotal of all block effectsis
zero; that is, : = ;

Following the method of section 4, in Figure 10(c), we show the absol ute differences between treatment means
and the overall mean, and a scaled treatment sum of squares due to Factor A or treatment (SSA/(nR,)), where we

RASHI 3 (1) : (2018) 9
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choose R, asthelargest deviation of treatment mean from overall mean, totheright of thevertical axis. Simultaneously,
to theleft of the vertical axisin Figure 10(c), we show the absoluteresiduals|e; ;| = |y; j — y;| after removing the
(block-adjusted) treatment means from the block-adjusted measurements. We show a scal ed sum of sgquares of these
absolute residuals or a scaled sum of squares within, i = SSW/(nR ), where we choose R, as the largest absolute
residual .

Figure 10. (a) Block-adjusted responses (responses minus block effects), (b) Block-adjusted responses sorted
by treatment groups, and (block-adjusted) treatment means, and (c) Deviations of treatment means from the overall

mean (shown to the right of y-axis) yield v = SSA/(nR,), and deviations of block-adjusted responses from the
treatment means (shown to the left of the y-axis) yield i = SSM/(nR ). In al three panels, the vertical axis ranges
over [0, 1]

Overall mean
I_| Supplier 3
]
]
- Supplier 2
|
|:—] Supplier 1
| T 74 T | — X
60 70 80 90 100
(a)
]
] Method 4
N
Method 3
1
[ Method 2
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I | Method 1
| T T | 1
60 70 80 90 100
(b)
V
H
T 1 H B ] H
I - i
I L i ! Method 4
! i ! ]
i ] P
| J I :
: | Lo, i | Method 3
1 ! 1 ! !
i e P |
1 Lo ' Method 2
1 I ]
i I
] E Method 1
T - ISSW = . SA T T - ;i
Ry=8 == v=3:A R,=12
10 B ] 410 20

Finally, the F-statistic for Factor A isshown in figure 11 astheratio AB:LM. One can al so see the standard error

G =JMsw asthe mean proportional between OS and OR,. Likewise, one can also visualize the F-statistic for
block effect (though that may not be of primary interest).
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Figure 11. Visualizing the F-statistic of factor A asAB:LM, in example 4
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6. SUMMARY AND DIRECTIONS OF FUTURE RESEARCH

Werecall avertical line method that equalizes the areas of two sets of rectanglesin order to visualize the mean,
the MD, the MSD or the SD of a set of numbers. The method utilizes the ECDF F of the data, the ECDF G of the
deviations and the ECDF H of the (scaled) squared deviations, al of which can be constructed using Euclidean
plane geometry. The same Euclidean method helps us visualize a scaled SSB, a scaled SSW, and the (unscal ed)
F-statistic in aone-way ANOVA, aswell assimilar quantitiesin atwo-way additive ANOVA model.

With some additional work we hopeto extend the method to visualizing atwo-way ANOVA with interaction, and
also to visualizing the correlation coefficient and the least-squares regression line that study a linear relationship
between two quantitative variables. We hope to report the details in future papers.
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