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ABSTRACT

Different methods of estimation of the probability mass function and the cumulative distribution function for the logarithmic
series distribution are considered. Following estimation methods are attempted: maximum likelihood estimator, uniformly
minimum variance unbiased estimator, plug-in uniformly minimum variance unbiased estimator, least squares estimator, weighted
least squares estimator. Monte Carlo simulations are performed to compare the performances of the proposed estimators. A real
data set has been analyzed for illustrative purpose.
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1.  INTRODUCTION
A random variable X is said to have the logarithmic series distribution, if its probability mass function (PMF) is

given by

(1)

and its cumulative distribution function (CDF) is given by

(2)

The above distribution has many applications in biology and ecology. It is also used for modelling data linked to
the number of species.

Now-a-days researchers have given attention for study of properties and inference on this distribution. Statisticians
are most of the times interested in inferring the parameter(s) involved in the distribution. Maximum likelihood
estimator (MLE), uniformly minimum variance unbiased estimator (UMVUE) and Bayes estimator of the parameter
have been focused by the authors.

Simulated mean squared error of MLE and UMVUE of the parameter p for different sample size n has been
shown in fig. 1. Theoretical mean squared errors (MSEs) are not studied as no closed form expression of MLE is
available in this case. However, from fig. 1, it is noticed that UMVUE is better than MLE of p in MSE sense. Hence
it seems to be an interesting study whether the same or different preservation rule prevails for the MLE, UMVUE
and plug-in-UMVUE (PUMVUE) of the PMF and the CDF of this distribution.

We see many situations where we have to estimate PMF, CDF or both. For instance, PMF can be used for
estimation of differential entropy, Renyi entropy, Kullback-Leibler divergence and Fisher information; CDF can be
used for estimation of the Survival/Reliability function, mean residual (inactivity) life function, cumulative residual
entropy, the quantile function, Bonferroni curve, Lorenz curve, and both the PMF and the CDF can be used for
estimation of probability weighted moments, hazard rate function, mean deviation about mean etc.

Some studies on the estimation of the probability density function (PDF) or PMF and CDF have appeared in
recent literature for some distributions: [1], [2], [3, 4, 5], [6, 7], [8], [9, 10, 11], [12] among others.

Following is the organization of the paper. Section 2 discusses the MLEs of the PMF and the CDF. Section 3
devotes to derive UMVUEs of the same. Section 4 discusses estimators based on plug-in UMVUE (PUMVUE).
Section 5 takes into account least squares and weighted least squares estimators. Section 6 shows reliability and its
related measures. All the estimators have been compared through simulation study in section 7. A data set has been
analyzed and summary result has been reported in section 8. Section 9 concludes.
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2. MLE of the PMF and the CDF
Let X1, X2, ....., Xn be a random sample of size n from the logarithmic series distribution given by (1). The MLE

of the above distribution is being derived as follows. The likelihood function of p is given by

Now,

(3)
where, 
Here we cannot find out any closed form expression for the MLE of p. Therefore, by using numerical approach,

we have to find out the root of the equation. By invariance property, we have the MLE of the PMF and the CDF by
substituting the MLE of p.

3. UMVUE of the PMF and the CDF
In this section, we obtain the UMVUE of the PMF and the CDF of the logarithmic series distribution. Also, we

obtain the MSEs (Variances) of these estimators.
Here  is a complete sufficient statistic for p. Being a sum of n independent random variables with

logarithmic series distribution having the parameter p has Stirling distribution of the first kind SDFK(n, p) [13], T
has the following mass function

(4)

Here s(x, n) is the Stirling function of the first kind. According to Rao-Blackwell, and Lehmann-Scheffe theorems,
we get the UMVUE of the PMF and the CDF as follows :

Consider,

Then

where   Therefore,

(5)
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Hence, E[Yt] gives the UMVUE of the PMF of the logarithmic series distribution.

Theorem 3.1.
Let T = t be given. Then

(6)

is UMVUE for f(x) and

(7)

is UMVUE for F(x).

Proof. The proof of  is the UMVUE follows from (5). The proof that is the UMVUE follows by

summing up .

The variance of is given by

and the variance of  is given by

The Graph of variance of UMVU estimator of the PMF and the CDF for different sample sizes is shown in
Figure 2.
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4. PUMVUE of the PMF and the CDF
In this section, we obtain the PUMVUE of the PMF and the CDF of the logarithmic series distribution. Also, we

obtain the MSEs of these estimators. The UMVUE of p is given by

(8)

where,  Therefore, we obtain the PUMVUE of the PMF and the CDF as

(9)

(10)

The bias of PUMVUE of the PMF is

(11)

By substituting (1), (4), (8) and (9), we get the value of (11).

Fig. 1: Graph of simulated MSE of MLE and UMVUE of p

Sample Size
(a) Variance of UMVUE of PMF

Sample Size
(b) Variance of UMVUE of CDF

Fig. 2: Graph of variance of UMVU estimator of the PMF and the CDF for p = 0.76 and x = 2.
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The bias of PUMVUE of the CDF is

(12)

Using (2), (4), (8) and (10), we get the value of (12).
The MSE of PUMVUE of the PMF is obtained by

(13)

We get the value of (13) using (1), (4), (8) and (9). Similarly,

(14)

We get the value of (14) using (2), (4), (8) and (10). Though we are not able to have any simplified form, we get
the value of bias and MSE using R software. Bias and MSE of PUMVUE of the PMF and the CDF for different
sample sizes are presented in Figures 3 and 4 respectively.

Sample Size
(a) Bias of PUMVUE of PMF

Sample Size
(b) Bias of PUMVUE of CDF

Fig. 3: Graph of bias of PUMVUE of the PMF and the CDF for p = 0.76 and x = 2.

Sample Size
(a) MSE of PUMVUE of PMF

Sample Size
(b) MSE of PUMVUE of CDF

Fig. 4: Graph of variance of PUMVUE of the PMF and the CDF for p = 0.76 and x = 2.
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5. Least squares and weighted least squares estimators
The least squares estimator (LSE) and weighted least squares estimator (WLSE) were proposed by [15] to

estimate the parameters of Beta distribution. In this paper, we apply the same technique for the logarithmic series
distribution. Suppose X1, ...., Xn is a random sample of size n from a CDF F(.) and let Xi:n, i = 1, ..... n denote the
ordered sample in ascending order. The proposed method uses the CDF, F(Xi:n). For a sample of size n, we have

E [F (Xj:n)] =  Var [F(Xj:n)] =  and Cov[F(Xj:n); F(Xk:n)] =   for j < k, [see [16]].

Using the expectations and the variances, two variants of the least squares method follow.

Method 1: Least squares estimator
This method is based on minimizing

with respect to the unknown parameters.

In case of logarithmic series distribution the LSE of p is , which can be obtained by minimizing

 with respect to p, where xj:n is the observed value of Xj:n.

So, to obtain the LSE of the PMF and the CDF, we use the same method as is used for the MLE. Therefore, the

LSE of the PMF, (x) and the CDF, (x) are given by

(15)

and

(16)

respectively. It is difficult to find the expectation and the MSE of these estimators analytically, so we calculate
them by means of simulation study.

Method 2 : Weighted Least squares estimator

This method is based on minimizing

with respect to the unknown parameters, where

In case of the logarithmic series distribution, the WLSE of p, say, LSE is the value minimizing

So, the WLSE of the PMF and the CDF are

(17)

and

(18)

The average and the MSE of these estimators have been calculated by means of a simulation study.
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6. Estimation of Reliability function and some related measures
It is to be noted that we will have the MLE and the UMVUE of R(x), the reliability function but for other related

measures they will be plug-in estimators.
1. Reliability function :

(19)

2. Hazard rate function :

(20)

3. Hazard rate average function :

(21)

4. Aging intensity function :

      (22)

5. Mean remaining life function :

(23)

We have the MLE,  of p from (3) and hence by substituting  in the expressions (19)-(23), we have the

corresponding MLEs. Again, we have the UMVUE of the PMF, and that of the CDF,  in (6) and (7). By
substituting these in (19)-(23), we have the PUMVUEs of the corresponding functions.

In Figures 6-8 the estimated reliability function, hazard rate function, hazard rate average function, aging intensity
function, mean remaining life function are presented for the data set [17].

On estimation of the PMF and CDF
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7. Simulation study
Here, we conduct Monte Carlo simulation to evaluate the performance of the estimators for the PMF and the

CDF discussed in the previous sections. All computations were performed using the R-software. We evaluate the
performance of the estimators based on MSEs. The MSEs were computed by generating 1000 replications from
logarithmic series distribution for p = 0.76 and x = 2. It is observed from Figure 5 that MSEs decrease with increasing
sample size. It veries the consistency properties of all the estimators. We observe from true MSE point of view, MLE
is better than other estimators for both the PMF and the CDF.

We have discussed here sample generation procedure [see, [18] ] from the logarithmic series distribution.
1. Set 
2. Generate U from uniform (0, 1) and set x = 1;  = t.
3. If U ≤ , deliver x as the generated value.
4. Otherwise replace U by U –  , x by x + 1, by  and then go to step 3.

8. Application
In this section, we provide the analysis of real data set for illustrative purpose. We have compared the performances

of MLE, PUMVUE, UMVUE, LSE, WLSE of the PMF and the CDF for the logarithmic series distribution. The
graphical presentation of the estimated PMF and CDF of data set is shown in Figure 9.

Here we have studied the data on the number of Macrolepidoptera caught in a light trap in the year of 1934
(given in Table 1). This data set is obtained from [17]. They have reported chi-square goodness-of-fit test having
observed x2 = 9.16 with d.f. 14 and the corresponding p-value is 0.82.

Table 1: Number of Macrolepidoptera caught in a light trap in the year of 1934.

Moths per species 1 2 3 4 5 6 7 8 9 10
Number of species in 1934 34 19 15 10 10 6 3 9 5 3
Moths per species 12 13 14 15 16 17 18 19 20 21
Number of species in 1934 1 5 3 6 3 1 1 1 2 2
Moths per species 22 23 24 25 28 29 32 33 38 39
Number of species in 1934 3 2 1 1 1 1 2 1 1 1
Moths per species 40 41 44 48 65 73 75 82 87 90
Number of species in 1934 3 1 1 2 1 1 1 1 1 1
Moths per species 99 100 109 126 138 145 153 159 165 219
Number of species in 1934 1 1 1 1 1 1 1 1 1 1

Fig. 5: MSEs of LSE, WLSE, MLE, PUMVUE and UMVUE of the PMF and the CDF of the
logarithmic series distribution for p = 0.76 and x = 2.
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Fig. 6: Graph of MLE, UMVUE and PUMVUE of reliability function and hazard rate function for the
data set.

Fig. 7: Graph of MLE, UMVUE and PUMVUE of hazard rate average function
and aging intensity function for the data set.

Fig. 8: Graph of MLE, UMVUE and PUMVUE of mean remaining life function for the data set.
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Table 2: Summarization of negative log-likelihood value

Estimator of PMF Negative log-likelihood value

WLSE 631.8942
LSE 631.8891
MLE 631.8801

UMVUE 631.859
PUMVUE 631.884

Table 2 gives the estimate of the negative log-likelihood values. Lower the value of negative log-likelihood
indicates the better fit. The results are more or less in same tune with the theoretical counterpart. Here UMVUE is
better in negative log-likelihood sense.

9. CONCLUSION
In the article, different methods of estimation of the PMF and the CDF of the logarithmic series distribution have

been considered. Maximum likelihood estimator (MLE), uniformly minimum variance unbiased estimator (UMVUE),
plug-in uniformly minimum variance unbiased estimator (PUMVUE), least squares estimator (LSE), weighted least
squares estimator (WLSE) have been found out. Monte Carlo simulations are performed to compare the performances
of the proposed estimators. Though UMVUE is better than the MLE of the parameter p, the plug-in UMVUE is not
better than the MLE or UMVUE of the PMF and the CDF in MSE sense. Actually UMVUE of the PMF is better, and
MLE as well as UMVUE are more or less equally efficient for CDF. It is observed from the data analysis that
UMVUE is better than other estimators for negative log-likelihood sense. Estimators of some reliability-related
measures have been discussed. Results of analysis of a data set have been reported.
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