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ABSTRACT
Gupta et. al. (2008, 2010) constructed two level SSDs through computer algorithm. They used lower bound to E(s2) to
measure the efficiency of the generated design. In this article we modify the algorithm of Gupta et. al. (2008, 2010) to
construct two level SSDs for both balance as well as nearly balanced cases. Instead E(s2) we have used rmax and fmax
criterion to compare the design among the class of E(s2) optimal designs. This algorithm generates design in such a way
that all the columns of the design matrix are distinct and no two columns are fully aliased. A catalogue of 30 optimal
supersaturated designs which are best with respect to rmax and fmax criterion among the class of E(s2) optimal SSDs have also
been prepared.
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1.  Introduction

A design having n runs and m factors  is  a
supersaturated design (SSD) when the degrees of
freedom for all the main effects of the m factors and
the intercept term exceed the total number of distinct
factor level combinations, n, of the design. The huge
advantage of these designs is the reduction in the
experimental cost drastically, but the critical
disadvantage is the confounding involved while
analyzing. As the run size is very less and the
experimentation cost is very less SSDs have been
studied extensively in the literature.

Supersaturated designs (SSDs) were introduced by
Satterthwaite (1959) for two-level factorials. He used
randomization procedure to construct balanced SSDs.
Booth and Cox (1962) also introduced SSDs for two-
level factors. Since then, number of research works
have been done in generating two-level SSDs (see
e.g., Bulutoglu and Cheng, 2004; Bulutoglu, 2007;
Ryan and Bulutoglu, 2007; Gupta et al., 2008; Das
et al., 2008; Nguyen and Cheng, 2008; Suen and Das,
2010).

Let X = (Xij
) be an n×m design matrix with

.  Let sij be the (i, j)th element of .  The

design matrix X is called column-orthogonal if  is
a diagonal matrix.  As soon as m > n, in case of SSD,
the column orthogonality is disturbed, and the column
non-orthogonality is measured with the popular

     criterion, proposed by Booth and

Cox (1962). On the other hand lots of research works
have been done in developing the lower bound to  both
for balanced as well as unbalanced cases.

In this research, we propose a computer algorithm
for generating two-level balanced as well as nearly
balanced SSDs. The algorithm generates efficient SSDs
for both the cases. The algorithms proposed by Nguyen
(1996), Lejeune (2003), Ryan and Bulutoglu (2007),
Gupta et al. (2008) and Gupta et al. (2010) have been
modified to construct efficient SSDs for both balanced
as well as nearly balanced cases. The proposed
algorithm have been constructed in such a way that it
generates an SSD where all the columns are distinct
and no column can be generated from any other column.
The algorithm generates balanced SSDs for even n and
nearly balanced SSDs for odd n. The algorithm checks
the efficiency of the constructed balanced design by
using lower bound to E(s2), given by Das et al. (2008)
and nearly balanced design by using the lower bound
to E(s2) given by Suen and Das (2010). For balanced
SSDs the algorithm has been so constructed that the
generated design has less number of orthogonal pair
of columns. And for nearly balanced design the
constructed design is efficient for all E(s2), rmax and
fmax criterion.

Some preliminaries are given in Section 2, in Section
3 the proposed algorithm is given. Illustration of the
algorithm with an example have been given in Section
4. Conclusion and a small catalogue of 30 optimal
designs obtained through the algorithm are also
tabulated in section 5.
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2.  PRILIMINARIES

Let the design matrix for a two-level supersaturated
design is denoted by X having m factors (columns) and
n runs (rows). A design is said to be balanced if the
number of +1’s and –1’s are equal in each column of
the design. For a design with n runs the number of +1’s
and –1’s in any column is equal to n/2. Obviously, n is
even when the design is balanced.

When n is odd, the design cannot be balance. For
odd n, Bulutoglu and Ryan (2008) proposed lower
bounds to E(s2) and also gave a method of generation
through computer algorithm. But their algorithm
construct the class of designs where the levels +1

appears [n/2] times and the level –1 appears n – 

times in any column of  X, where, [.] denotes the greatest
integer function.  Bulutoglu and Ryan (2008) obtained
a number of optimal SSDs using their algorithm and
their proposed lower bounds. Nguyen and Cheng (2008)
also provide lower bound to E(s2) for both even and
odd n. Recently Suen and Das (2010)improved the lower
bound to E(s2) for odd n.

Gupta et al. (2010) introduce nearly balanced
designs for odd n.  They define nearly balance design
where the design is unbalanced but a balance is achieved
in the appearance of the two levels +1 and –1 over the
columns of X. A design is said to be nearly balanced if
the frequencies of occurrence of levels +1 and –1 differ
at most by one in such a way that in each of the first

 columns of X, the frequencies of the occurrence

of levels + l and –1 is  and n – , respectively

and in each of the remaining  columns of X,

the frequency of occurrence of levels + l and –1 is

n – and , respectively, [.] denotes the greatest

integer function. For nearly balance design, Gupta et
al. (2010) proposed a method of construction through
computer algorithm.

For any balanced SSD with m factors and n runs,
Nguyen (1996) and Tang and Wu (1997) independently
gave the following lower bound to E(s2):

(2.1)

When n ≡ 0 (mod 4), this bound can be achieved
only if m is a multiple of n – 1; when n ≡ 2 (mod 4), m
needs to be an even multiple of n – 1.

Further improvements on the lower bound given by
Nguyen (1996) was proposed by Butler et al. (2001),
Bulutoglu and Cheng (2004), Ryan and Bulutoglu
(2007) and Das et al. (2008).

Das et al. (2008) proposed the sharper lower bound
to E(s2) for balanced SSDs which is given in the
following Theorem.

Theorem 2.1 (Das et al.; 2008). For a supersaturated
design with n runs and m = p (n –1) ± r factors (p

positive, , E(s2) is greater than or equal to

the lower bound LB, where LB is as defined below:

1. Let  n ≡ 0 (mod 4). Then,

        (2.2)

where

 2.  Let n ≡ 2 (mod 4). Then,

 (2.3)

where

(i) When p is even,

(ii) When p is odd,

and x = 32 if 

(mod 2) for i = 0 or 1 ; else x = 0.
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When the number of runs n is odd, Nguyen and
Cheng (2008) proposed a lower bound to E(s2).
Bulutoglu and Ryan (2008) and Suen and Das (2010)
sharpened the lower bound to E(s2) for odd n. We have
used the lower bound given by Suen and Das (2010) to
calculate the lower bounds to E(s2) for nearly balanced
SSDs and is given below.

Theorem 2.2 (Suen and Das; 2010). For an odd
integer n and an integer m  n, let q be the integer such
that m + q ≡ 2 (mod 4) and – 2n  qn – m  2n, and let

g(q) = n (m + q)2 – 2mq – (m + q)2 n2.  Also let
p*, d and d* be defined as

and

 Then,

     

Gupta et al. (2010) proposed the following theorem
which provides the maximum number of distinct
columns for balanced and nearly balanced SSDs. The
columns are distinct in the sense that no two columns
are same and no columns can be obtained from any other
columns by interchanging the symbols.

Theorem 2.3(Gupta et al. 2010). For a two-level
SSD with n runs and m factors, the upper bound on the
number of factors such that no two factors are identical
or are linear function of any other column(s) is given
by

(i) When n is even, i.e., n = 2t, t being a positive
integer

(2.5)

(i) When n is odd, i.e., n = 2t +1, t being a positive
integer

(2.6)

To construct efficient SSDs the lower bound to E(s2)
given by Das et al. (2008) for balanced SSDs and the
lower bound to E(s2) given by Suen and Das (2010) for
nearly balanced SSDs have been used where the
efficiency of the constructed designs has been computed
by using the efficiency defined as

Efficiency = (2.7)

To compute the degree of association between the
columns of an SSD rmax and fmaxare  defined as

  and fmax = (frequency of occurence of

rmax in the upper diagonal of R)

where correlation matrix , and

the indicator function  if a = b and is 0
otherwise.

A design with efficiency 1 is an optimal design. And
an optimal design having less values of rmax and fmax is
desired. We now describe a procedure for generation
of optimal/efficient two level SSDs.

3. PROPOSED ALGORITHM FOR
CONSTRUCTING TWO-LEVEL SSDS

The algorithms proposed by Nguyen (1996),
Lejeune (2003), Ryan and Bulutoglu (2007) and Gupta
et al. (2008, 2010) have been modified in the proposed
algorithm. The algorithm generates balanced SSDs for
even n and nearly balanced SSDs for odd n lower bound
to E(s2), given by Das et al. (2008) and Suen and Das
(2010) have been used to check the efficiency of the
constructed design for balanced and nearly balanced
SSDs respectively. In case of balanced SSDs the
algorithm generates design with less number of
orthogonal pair of columns. And in case of nearly
balanced design the algorithm generates design which
is efficient for all E(s2), rmax and fmax criterion.
Step1:  initialize the generation procedure

(i) Input the parameter viz. n (the number of runs)
and m (the number of factors).

(ii) Check the parameter and decide the layout of the
design to be generated. The criterion of n –1 <m
and the values of n and m have been checked by
Theorem 2.3. If the generation is possible the
algorithm goes to next step otherwise ask for new
parameter.

(2, 4)
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(iii) Based on the values of n and m the algorithm
calculates the lower bound to E(s2). The bound
is calculated using Theorem 2.1 or Theorem 2.2
for the case of balanced or nearly balanced SSDs,
respectively.

Step 2: generation of random design

(i) Based on the input parameter the algorithm
generates a random matrix X of order n×m with
entries as –1, +1 in each column.

(ii) If n is even the random matrix X is generated in
such a way that the frequencies of the occurrence

of levels + l and –1 in each column is  .

(iii) If n is odd the random matrix X is generated in
such a way that the in such a way that in each of

the first  columns of X, the frequencies of

the occurrence of levels + l and –1 is   and

n – , respectively and in each of the

remaining m –  columns of  X, the frequency

of occurrence of levels + l and –1 is n –  and

 , respectively.

(iv) After generating initial design Algorithm

compute, where sij is the

(i, j)th entry of .

(v) Check the efficiency of the design and decide
whether improvement is necessary or not. For
improvement of the initial design algorithm move
to step3.

Step 3: Improvement of design

(i) Compute for j = 1,2...., m, where sij is

the (i, j)th entry of X’X and Select the kth column

for modification if ,  j = 1, 2,...,m.

(ii) For the selected kth column, swap the first entry
of this column with all the other entries in that
column that have opposite signs and calculate the
value of E(s2) at each swapping.

(iii)  The swapping of entries  continues
for remaining entries of the kth column and keep
calculating the value of E(s2) at each swapping.

(iv)  Accept the swapping of entries in the column
which leads to maximum reduction in the value
of E(s2).

(v) Repeat (iv) and (v) of Step 2 and decide for next
step.

Step 4: Termination of swapping in step 3.

This improvement of design stops when either of
the following two conditions arrived:

(i) E(s2) attains the lower bound for the given
parameter.

(ii) No further reduction in the value of E(s2) is
possible through swapping.

Step 5: Finalize design

If (i) of Step 4 achieved, algorithm checks the
following property of the design (say D) otherwise
algorithm goes to (v) of this step.

(i) If any pair of columns of D are fully aliased
algorithm randomly select any one of the column
and replace with a freshly generated column
having same number of +1 and –1. While
replacing with new column it also ensures that
the new column is not aliased with any other
column of D.

(ii) After replacing all aliased columns algorithm take
the new design as initial design and goes to (iv)
of Step 2.

(iii) If no two columns are aliased in D the algorithm
computes the correlation matrix

 and then the values of
rmax and fmax for the design D,

(iv) If no two columns are aliased in D algorithm
identifies the number of pair wise orthogonal
columns in D in the case of n ≡ 0 (mod 4).

(v) Select the kth column by using (i) of Step 3 and
generate a new design D1 by deleting the selected
column. Taking D1 as initial design algorithm
repeat the same process to construct an optimal
SSD with parameter SSD (n, m-1) satisfying the
desired property.

Construction of optimal Two- Level Supersaturated Designs
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(vi) If algorithm becomes successful to get
D1algorithm generate a fresh column having same
number of +1 and –1 as of the deleted column
and add the new column to D1. While adding new
column it also ensures that the new column is not
aliased with any other column of D1. In this way
the algorithm again get a new initial design D
and goes to (iv) of Step 2.

(vii) Algorithm repeat the whole procedure to generate
5 design with same efficiency named ID1, ID2,
ID3, ID4 and ID5 (say). Out of these five designs
the algorithm finalize and report the design having
less values of rmax and fmax .

Using the algorithm, we generate a large number of
optimal designs having less values of rmax and fmax. A
small catalogue of 20 optimal designs for number of

-1 -1 -1 1 -1 -1 -1 1 -1 1 1 -1 -1 -1 -1 -1

-1 1 1 -1 -1 1 -1 -1 1 1 -1 1 1 1 1 -1

1 -1 1 -1 1 -1 1 1 -1 -1 1 1 1 1 -1 1

1 -1 -1 1 -1 1 1 -1 1 -1 -1 -1 1 -1 1 -1

1 1 1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1

-1 -1 -1 -1 1 1 -1 1 -1 1 1 1 1 1 1 1

-1 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -1 1 1

XTX                                     Calculation of E(s2)

7 -1 3 -1 -1 -1 3 -1 1 -3 -3 -3 1 1 -3 1

-1 7 3 -1 -1 -1 -1 -5 5 1 -3 1 -3 1 1 1

3 3 7 -5 -1 -1 -1 -1 1 1 -3 1 1 5 -3 1

-1 -1 -5 7 -1 -1 3 -1 1 -3 1 -3 -3 -7 1 -3

-1 -1 -1 -1 7 -1 3 3 -3 -3 5 5 1 1 1 5

-1 -1 -1 -1 -1 7 -1 -1 1 1 -3 1 5 1 5 -3

3 -1 -1 3 3 -1 7 -1 1 -7 1 1 1 -3 1 1

-1 -5 -1 -1 3 -1 -1 7 -7 1 5 1 1 1 -3 1

1 5 1 1 -3 1 1 -7 7 -1 -5 -1 -1 -1 3 -1

-3 1 1 -3 -3 1 -7 1 -1 7 -1 -1 -1 3 -1 -1

-3 -3 -3 1 5 -3 1 5 -5 -1 7 3 -1 -1 -1 3

-3 1 1 -3 5 1 1 1 -1 -1 3 7 3 3 3 3

1 -3 1 -3 1 5 1 1 -1 -1 -1 3 7 3 3 -1

1 1 5 -7 1 1 -3 1 -1 3 -1 3 3 7 -1 3

-3 1 -3 1 1 5 1 -3 3 -1 -1 3 3 -1 7 -1

1 1 1 -3 5 -3 1 1 -1 -1 3 3 -1 3 -1 7
112 136 144 176 168 128 144 176 176 144 184 144 128 176 136 128

Kole and Rai

runs  is given in section 5. The layout of these designs
is available with the author.
4. IMPLEMENTATION OF THE PROPOSED
ALGORITHM

We now describe the step by step implementation
of the proposed algorithm through an example of nearly
balanced SSDs.

Example4.1 Two level Nearly Balanced SSD
(7, 16)

Suppose we want to construct a nearly balanced two-
level SSD for 7 runs having 16 factors. As the parameter
satisfied the necessary condition of the parameter of
SSDs Step 1 of the proposed algorithm calculates Lower
Bound to E(s2) as 5.400 and Step 2 of the algorithm
generate the following random two level balanced SSD
(7, 16):
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= 808/120 = 6.733

Using (v) of Step 2 we get the efficiency of the design
is 0.8012 therefore the algorithm goes to Step 3 and

compute  for each column by using (i) of Step 3 and
we select column number 11 for modification. Using
(ii), (ii) and (iii) of Step 3 on the design generated, we
get the following Table:

Table 4.1: Exchange of coordinate i with coordinate j (j > i) for column 11

Sl. No. (i,  j) E(s2)  Sl. No. (i,  j) E(s2)

1 (1, 2) 6.733 7 (3, 4) 6.733

2 (1, 4 ) 6.733 8 (3, 5) 6.733

3 (1, 5) 6.600 9 (4, 6) 6.733

4 (2, 3) 6.467 10 (4, 7) 6.667

5 (2, 6) 5.933 11 (5, 6) 6.600

6 (2, 7) 6.667 12 (5, 7) 6.800

Table 4.1 shows that 7th exchange i.e. the exchange of pair of coordinates 2 and 6 in column 11 leads to maximum
reduction in E(s2). Retaining this best exchange the design obtained is the following with E(s2) = 5.933:

-1 -1 -1 1 -1 -1 -1 1 -1 1 1 -1 -1 -1 -1 -1

-1 1 1 -1 -1 1 -1 -1 1 1 1 1 1 1 1 -1

1 -1 1 -1 1 -1 1 1 -1 -1 1 1 1 1 -1 1

1 -1 -1 1 -1 1 1 -1 1 -1 -1 -1 1 -1 1 -1

1 1 1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1

-1 -1 -1 -1 1 1 -1 1 -1 1 -1 1 1 1 1 1

-1 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -1 1 1

Using (iv) and (v) of Step 2 we get that further modification is necessary and Step 3 select column 14 for modification.
Using (iii) of Step 3 on the design generated, we get the following Table:

Table 4.2: Exchange of coordinate i with coordinate j (j>i) for column 14

Sl. No. (i,  j) E(s2) Sl. No. (i,  j) E(s2)

1 (1, 2) 6.000 7 (4, 5) 5.867

2 (1, 3 ) 6.000 8 (4, 6) 5.733

3 (1, 5) 5.933 9 (6, 7) 5.867

4 (1, 6) 5.800 10 (5, 7) 6.000

5 (2, 4) 5.667 11 (2, 3) 5.800

6 (3, 4) 5.933 12 (2, 7) 5.800

From Table 4.2 it is clear that 5th exchange i.e. the exchange of pair of coordinates 2 and 4 in column 14 leads to
maximum reduction in E(s2). After exchange the design obtained is the following with E(s2) = 5.667.

Construction of optimal Two- Level Supersaturated Designs
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-1 -1 -1 1 -1 -1 -1 1 -1 1 1 -1 -1 -1 -1 -1

-1 1 1 -1 -1 1 -1 -1 1 1 1 1 1 -1 1 -1

1 -1 1 -1 1 -1 1 1 -1 -1 1 1 1 1 -1 1

1 -1 -1 1 -1 1 1 -1 1 -1 -1 -1 1 1 1 -1

1 1 1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1

-1 -1 -1 -1 1 1 -1 1 -1 1 -1 1 1 1 1 1

-1 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -1 1 1

The exchange of coordinates continues again after selecting column number 8. And the values of  E(s2)   after each
exchange is given below:

Table 4.3: Exchange of coordinate i with coordinate j (j>i) for column 8

Sl. No. (i, j) E(s2) Sl. No. (i, j) E(s2)

1 (1, 2) 5.800 7 (3, 4) 5.733

2 (1, 4 ) 6.000 8 (3, 5) 5.667

3 (1, 5) 5.933 9 (3, 7) 5.667

4 (1, 7) 5.933 10 (4, 6) 5.667

5 (2, 3) 5.800 11 (5, 6) 5.867

6 (2, 6) 5.467 12 (6, 7) 5.867

Table 4.3 shows that the maximum reduction in E(s2) is with the exchange of pair of coordinates 2 and 6  in column
8.  After exchange the design obtained is the following with E(s2) = 5.467.

-1 -1 -1 1 -1 -1 -1 1 -1 1 1 -1 -1 -1 -1 -1

-1 1 1 -1 -1 1 -1 1 1 1 1 1 1 -1 1 -1

1 -1 1 -1 1 -1 1 1 -1 -1 1 1 1 1 -1 1

1 -1 -1 1 -1 1 1 -1 1 -1 -1 -1 1 1 1 -1

1 1 1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1

-1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1 1 1 1 1

-1 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -1 1 1
This coordinate exchange of various columns selected in (i) of Step 3 terminates with the following design with
E(s2) = 5.6, since there is no further reduction in the values of E(s2). The efficiency of this design D is 0.964.

-1 1 1 -1 -1 1 1 1 1 1 -1 1 -1 -1 1 1

1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 1

1 -1 1 -1 1 1 1 -1 -1 1 1 -1 1 1 -1 1

1 1 1 1 -1 -1 -1 -1 1 -1 1 1 1 1 1 -1

-1 -1 -1 1 -1 1 -1 -1 -1 1 1 1 -1 1 -1 -1

-1 1 -1 -1 1 -1 -1 1 1 1 1 -1 1 -1 -1 -1

-1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 1 1 1 1

Kole and Rai
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The efficiency of this design is 0.964. Therefore, the algorithm goes to (v) of Step 5.column 8 is selected for
deletion . Deleting column 8 we get the new initial design D1as follows.

-1 1 1 -1 -1 1 1 1 1 -1 1 -1 -1 1 1

1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1

1 -1 1 -1 1 1 1 -1 1 1 -1 1 1 -1 1

1 1 1 1 -1 -1 -1 1 -1 1 1 1 1 1 -1

-1 -1 -1 1 -1 1 -1 -1 1 1 1 -1 1 -1 -1

-1 1 -1 -1 1 -1 -1 1 1 1 -1 1 -1 -1 -1

-1 -1 -1 1 1 -1 1 1 -1 -1 1 1 1 1 1

Using (v) and (vi) of step 5 gives the following optimal initial design ID1having  rmax=0.75 and fmax= 6. The design
is given below.

-1 1 1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 1 1

1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1

1 -1 1 -1 1 1 1 -1 -1 1 1 -1 1 1 -1 1

1 1 1 1 -1 -1 -1 -1 1 -1 1 1 1 1 1 -1

-1 -1 -1 1 -1 1 -1 1 -1 1 1 1 -1 1 -1 -1

-1 1 -1 -1 1 -1 -1 1 1 1 1 -1 1 -1 -1 -1

Using (vii) of Step 5 the algorithm generates 5 initial design names ID1, ID2, ID3, ID4 and ID5 which is E(s2)
optimal. For each of these five design algorithm calculate rmax and fmax and report the design having less values of
rmax and fmax.  Step 5 report the final design as given bellow which is E(s2) optimal having rmax=0.75 and fmax= 6.

-1 1 1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 1 1

1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1

1 -1 1 -1 1 1 1 -1 -1 1 1 -1 1 1 -1 1

1 1 1 1 -1 -1 -1 -1 1 -1 1 1 1 1 1 -1

-1 -1 -1 1 -1 1 -1 1 -1 1 1 1 -1 1 -1 -1

-1 1 -1 -1 1 -1 -1 1 1 1 1 -1 1 -1 -1 -1

-1 -1 -1 1 1 -1 1 1 1 -1 -1 1 1 1 1 1

Construction of optimal Two- Level Supersaturated Designs

5.  CONCLUSION

In this article we propose a computer algorithm for
generating two-level balanced as well as nearly balanced
SSDs. An important feature of this algorithm is that it
generates an SSD where all the columns are distinct
and no column can be generated from any other column.
The main emphasis of this work has been given to
generate the best design based on rmax and fmax criterion
among the class of E(s2) optimal SSDs.

Using the algorithm, we can generate a number of
optimal designs. We have given a catalogue of 30
optimal designs for number of runs 5  n 12 in the

catalogue. The values of E(s2) and their lower bounds
and the values of rmax and fmaxof the designs generated
have also been given in the catalogue.

The algorithm is also efficient in consuming CPU
time. Any designs given in the catalogue take less than
20 CPU seconds using Intel® Core i5 @ 2.30 GHz CPU
with 4 GB memory. A reason for taking less time is that
the algorithm works only one column at a time which
contributes maximum to the value of E(s2) instead of
working with all the columns.
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Table 5.1: Catalogue of optimal SSDs

Sl. No. n m Lower Bounds
(No. of (No. of
runs) factors) E(s2) Suen and Das Das et al. rmax fmax

(2010)  (2008)

1 5 8 3.571 3.571 - 0.667 9

2 5 9 3.667 3.667 - 0.667 12

3 5 10 3.667 3.667 - 0.667 15

4 6 9 4.000 - 4.000 0.333 36

5 6 10 4.000 - 4.000 0.333 45

6 7 12 4.636 4.636 - 0.750 4

7 7 13 4.692 4.692 - 0.750 6

8 7 14 4.956 4.956 0.750 4

9 7 15 5.114 5.114 - 0.750 3

10 8 14 4.923 - 4.923 0.500 17

11 8 15 5.486 - 5.486 0.500 36

12 8 16 5.867 - 5.867 0.500 44

13 8 17 6.118 - 6.118 0.500 52

14 8 18 6.275 - 6.275 0.500 60

15 8 20 6.400 - 6.400 0.500 76

16 9 16 5.667 5.667 - 0.800 2

17 9 17 5.705 5.705 - 0.550 1

18 9 18 5.706 5.706 - 0.800 3

19 10 16 5.867 - 5.867 0.200 64

20 10 17 5.882 - 5.882 0.600 8

21 10 18 5.882 - 5.882 0.600 9

22 10 19 6.433 - 6.433 0.600 13

23 10 20 6.863 - 6.863 0.600 17

24 11 16 5.333 5.333 - 0.633 1

25 11 17 5.706 5.706 - 0.633 1

26 11 20 6.684 6.684 - 0.633 2

27 12 18 5.961 - 5.961 0.666 1

28 12 19 6.456 - 6.456 0.666 1

29 12 20 6.821 - 6.821 0.666 2

30 12 24 7.826 - 7.826 0.666 5

Kole and Rai
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