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ABSTRACT

Longitudinal data, also popularly known as repeated measure data, are challenging from modelling perspective due to the fact
that the measurements from the same individual at different time points are inherently correlated. Despite the difficulty, there
has been a substantial amount of work done in last twenty years on the covariance estimation of such data. In this article, we
will review some standard parametric methods for covariance estimation and then will discuss on some recent developments on
it. Powerful semiparametric methods have been proposed in the literature in the last ten years for the joint estimation of the
mean trajectories and the covariance matrix. Such methods can guarantee the positive definiteness of the estimated covariance
matrix and thus provide reliable parameter estimates. We will also discuss Bayesian semiparametric and nonparametric methods
for the covariance estimation of longitudinal data with sparsity. When the data come from the subjects belonging to different
related groups, it is desirable that the covariance matrices for the groups will share some parameters and this can be achieved
by considering a suitable non-parametric prior distribution on the covariance parameters. We also discuss the joint covariance
estimation for bivariate and multivariate longitudinal outcomes. We comment on the adjustment needed for the covariance
estimation of the longitudinal data with missing values.

Keywords : Covariance matrix, Longitudinal data, Multivariate data, Positive definiteness, Random effects, Semiparametric
approach.

1.  Introduction
Repeated measure data or longitudinal data are

obtained from the longitudinal studies where the subjects
are measured at multiple time points, not necessarily
evenly spaced. Such data are also known as cross-
sectional time series data. Typically, in statistics, we come
across the cross-sectional data where we have n subjects
and measurements are obtained on one or more variables
of interest at one particular time point. On the other hand,
time series data are obtained for one or more variables
from one subject at multiple time points (T). In the
longitudinal data, we have n subjects and measurements
are taken on one or more variables at T different time
points. Thus, longitudinal data are cross-sectional at each
fixed time point and are time series for a fixed subject.
In economics and other related social sciences,
longitudinal data are also known as panel data.

Longitudinal data occur in a variety of disciplines
including but not limited to agriculture, biology, medical
science, social science, engineering, and public health.
For example, HIV patients are monitored by measuring
the CD4 counts at different time points. In health
economics, the out of pocket medical expenditures
(medical expenditure not reimbursed or paid trough the
health insurances) are measured from the aged
individuals for different years. A geneticist might be
interested in knowing the functional behaviour of certain
genes at the different stages of human life and hence
measures certain biomarker (body weight, for example)
for different subjects at different ages. In a regular
longitudinal study all the subjects are measured at the

same time points, while in the irregular case, different
subjects are measured at different time points and this
introduces sparsity in the data.

Statistical analysis of longitudinal data is challenging
due to the fact that the measurements obtained from the
same subject at different time points are inherently
correlated, even when the subjects are independent to
each other. Let Yil, . . . , YiT be the measurements for the
i-th subject in a longitudinal study, for i = 1, 2, . . . , n.
Traditionally, one should assume that the vectors
Yi = (Yi1, . . . , YiT )T are identically and independently
distributed with T-variate normal distribution with mean
vector = μi and the covariance matrix = Σ. Modeling of
μi is essentially a regression problem but the additional
complexity in the longitudinal study is to model the
unknown covariance matrix Σ. Also, note that the

symmetric matrix Σ will have  number of

unknown parameters, and it is not uncommon to have

n < . This introduces the “smaller sample larger

parameter” issue in the high-dimensional statistics
literature.

For analysing the longitudinal data, Laird and Ware
(1982) introduced random effects model and developed
a likelihood based estimation approach. This approach
is handy but cannot explicitly explain the underlying
covariance structure of the variable(s) of interest.
Pourahmadi (1999, 2000) provided a model based
flexible approach of estimating the covariance matrix
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for the univariate longitudinal data. This approach has
been used extensively in the literature since it provides
a positive definite estimated covariance matrix. Wu and
Pourahmadi (2003) proposed a non-parametric approach
of estimating the large covariance matrices. In a Bayesian
framework, Daniels and Pourahmadi (2002) developed
prior distributions which can shrink the underlying
unknown covariance matrices to some known structures.
Pan and Mackenzie (2003) generalized Pourahmadi’s
approach to the irregular univariate longitudinal data.
In the gene mapping problem, Das et al. (2013a) used
Pan and Mackenzie’s (2003) approach for modelling the
longitudinal biomarkers. There is a vast literature on
estimating the covariance matrix for the univariate
longitudinal data.

For the bivariate or the multivariate settings, although
a significant amount of work has been done, the literature
is still not vast. The challenge in these settings is to handle
the within response and the between response
dependence. Sy, Taylor and Cumberland (1997)
proposed a treatment for this issue based on the
parametric stochastic model for CD4 T-cells and beta-2
microglobulin in AIDS data. This approach can also
handle the irregular longitudinal data. Linear mixed
models for analysing the bivariate longitudinal data were
proposed by Theibaut et al. (2002). They also provided
SAS package for such modelling. For regular bivariate
longitudinal data, a longitudinal model for detecting
prescribing change in two drugs with correlated errors
was proposed by Sithole and Jones (2007) using a
bivariate autoregressive process. This approach was
generalized by Das et al. (2011) for the irregular sparse
longitudinal data. Das et al. (2013b) also generalized
Pourahmadi’s (1999) approach for the bivariate irregular
longitudinal data, however, the estimated covariance
matrix is not guaranteed to be positive definite.
Bandyopadhyay et al. (2010), Ghosh and Hanson (2010)
used random effects for capturing the longitudinal
dependence in the multivariate longitudinal outcomes.

In many applications, we obtain longitudinal data
coming from several related groups and it is not
uncommon that the covariance features are same and/or
similar across the groups under consideration. It is
practically impossible to determine such similarity
manually. But in a Bayesian framework, suitable prior
distributions can be taken for determining such similarity.
Gaskins and Daniels (2012) used the matrix stick-
breaking process (MSBP), originally proposed by
Dunson et al. (2008) for non-parametrically modelling
the grouped longitudinal matrices for the regular
univariate outcomes. Das and Daniels (2014) extended
this for the irregular bivariate longitudinal data. In
particular, for each response feature, the generalized

autoregressive parameters and innovation variances are
first expressed as polynomial functions of time, and for
the coefficients of these polynomial functions they
considered MSBP priors to allow information sharing
across the parameters of different groups and to introduce
sparsity. Similar approaches have been used in Das
et al. (2015), Chatterjee et al. (2016) for the applications
in public health and engineering respectively.

Covariance estimation becomes really challenging
in the presence of missingness. In the longitudinal
studies, missingness can happen for many reasons,
including the death or withdrawal of the subjects from
the study. Missingness can be ignorable or non-ignorable
(Rubin, 1976). For an efficient covariance estimation,
the missing values are to be imputed. Daniels and Hogan
(2008) provide different imputation techniques under the
ignorable and non-ignorable missingness. Covariance
estimation can also be severely affected by the zero-
inflation in the outcomes.

The rest of the paper is organized as the following.
In Section 2, we discuss the commonly used methods
for the covariance estimation in the univariate
longitudinal responses. In this section, we also discuss
the methods proposed by Pourahmadi (1999, 2000) and
the extension of it for the irregular longitudinal case by
Pan and Mackenzie (2003). Section 3 provides the
generalization and/or extension of the methods discussed
in Sections 2 for the bivariate longitudinal case. Bayesian
semiparametric covariance estimation for the grouped
univariate and bivariate longitudinal data are discussed
in Section 4. Finally, Section 5 concludes.

2. Covariance Estimation for Univariate
Longitudinal Data
2.1 Traditional parametric approach

For Yi = (Yi1, Yi2, . . . , YiT )T to be iid NT (μi, Σ), often
it is not possible to model and estimate Σ in an
unstructured way. This is because the number of unknown
parameters to be estimated becomes large even for
moderate T. To avoid this issue, traditionally we assume
a known structure for Σ and then estimate the underlying
parameters. Most commonly used structure for Σ is the
auto-regressive structure of order 1, which we will denote
by AR(1). The AR(1) structure is given as the following:
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Note that in AR(1) structure, there are only two
parameters, the variance parameters σ2 and the
correlation parameter ρ. Thus the estimation becomes
simple and the estimated covariance matrix becomes
positive definite. This structure relies on the assumption
that the correlations between the observations
corresponding to the closer time points are stronger and
the strength of the correlation reduces as the time points
become far away. Although this assumption sounds
reasonable for the longitudinal data, but in the presence
of seasonal variation, this assumption is violated.

For large T, sometimes it is meaningful to assume
that the longitudinal correlation disappears after some
threshold. For example, for some prefixed length w, one
can assume correlation (Yit, Yit′) =ρ⏐t–t′⏐, if  ⏐t–t′⏐ < w ;
and 0, otherwise. For w = 3, one will get the following
covariance structure:

The optimal band width w is typically not prefixed,
but is obtained from the data by cross-validation or some
other criterion.

Another popular choice of Σ is the compound
symmetry (CS) structure. This structure is based on the
assumption that the correlation between measurements
corresponding to two different time points is always
constant. This will result in the following covariance
matrix with two parameters only and the estimated
covariance matrix is always positive definite.

In reality, it is not apparent which structure is
supported by the data and hence we use the model fitting
criteria. For any real data, one should fit both the AR(1)
and the compound symmetry structure and compute AIC,
BIC values. The best alternative will be chosen based
on the smallest AIC, BIC values. Alternatively, one can
model Σ as a convex combination of the two structures
as the following:

Σ = kAR(1) + (1 – k) CS, for 0 < k < 1. The optimal
value of k is obtained from 10-fold cross-validation. Note

that k determines the weights for AR(1) and CS structure.
In social sciences, such structures are popularly used
for estimating the covariance structure of panel data.

2.2 Pourahmadi’s approach
Pourahmadi (1999) developed a regression based

approach of estimating the covariance matrix for regular
univariate longitudinal data. We consider a particular
subject measured at T different time points. For a simple
description, we ignore the subscript i for the moment.
Without loss of generality, assume the response vector
y = (y1, ..., yT ) has mean vector 0 and covariance matrix
Σ. Pourahmadi modelled yt, the response at time t, using
its predecessors as the following:

(1)

where φt,t′  is the corresponding regression coefficient.
Here ∈t is the prediction error with mean = 0 and be
its variance. Assuming ∈t’s to be uncorrelated, we get
cov(∈) = E, a diagonal matrix with  being the t-th
diagonal element, where ∈ = (∈1, ..., ∈T)′  , the vector
of prediction errors. In matrix representation we get,

∈ = Ly, (2)
where L is a lower triangular matrix with 1’s in

diagonal elements and –φt,t′  in the (t, t′ )th off-diagonal
position. From the above equation we get,

cov(∈) = Lcov(y)LT = LΣLT = E, (3)
which is similar to the modified Cholesky decomposition
of Σ.

Equation (3) essentially guarantees that the estimated
covariance matrix will be positive definite. Pourahmadi
(1999, 2000) modelled the unconstrained dependence
parameters log  and φt,t′  with a polynomial function
of time as the following:

log = λ0 + λ1t + λ2t2 + .... + λgtg, (4)

φt,t′  = δ0 + δ1(t – t′) + δ2(t – t′)2 + ... + δh(t – t′)h,
(t′  = 1, 2, ... t – 1). (5)
Note that the estimation of the covariance matrix Σ
essentially becomes the estimation of the parameters λs
and δs. The optimal order of the above polynomials g
and h are obtained from the information criteria AIC,
BIC. Pan and Mackenzie (2003) proposed a likelihood
based method and estimated the covariance parameters
using the Iteratively Reweighted Least Squares (IRLS)
algorithm. Note that for the irregular longitudinal
measurements, Pan and Mackenzie (2003) simply
expressed the subject-specific covariance matrices Σi  as
the following:

, and used the above approach for estimating
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the covariance matrices Σi. Das et al. (2013a) used a
Bayesian approach and estimated the parameters λs and
δs by Markov Chain Monte Carlo (MCMC) method.

3. Covariance Estimation for Bivariate Longitudinal
Data
3.1 Parametric approach

In the parametric approach, Sithole and Jones (2007)
modelled the covariance matrix of regular bivariate
longitudinal data based on the idea similar to the
univariate case. The covariance matrix for the bivariate
longitudinal response is modelled as a Kronecker product
of two known structures. Let Yitk denote the k-th response
feature measured from the i-th subject at time t. For
k = 2, we denote the response vector for the i-th subject
as the following : Yi = [Yi11, Yi21, ..., YiT1, Yi12, Yi22, ... ,
YiT2],  and we assume that Yis are identically and
independently distributed as 2T variate normal
distribution with covariance matrix = Σ. For fixed k(=1
and 2), we assume that the longitudinal measurements
from the same subject have an AR(1)structure, while the
correlation between the two response features remains
the same over time. This kind of covariance structure
can be expressed as UN ⊗ AR(1), where UN is a 2X2

symmetric matrix with and as the diagonal
elements and σ12 as the off-diagonal element. For
instance, if we have three repeated measures from a
subject, then we assume a covariance matrix with the
structure UN ⊗ AR(1) where UN and AR(1) are

and

 

respectively. This parametric structure assumes that intra-
response longitudinal correlations are same for both the
responses, and also the inter-response correlation is
proportional to the intra-response correlation. However,
such assumptions are not too restrictive and can be easily
modelled using the standard statistical packages (SAS,
for example). Das et al. (2011) extended this approach
for the irregular sparse case while modelling the systolic
and diastolic blood pressures in a genome-wide

association study. Similarly, one can use UN ⊗ CS
structure for the same purpose. Similar to the univariate
case, in practice, our recommendation is to fit both
UN ⊗ AR(1) and UN ⊗ CS and then choose the optimal
one based on the information criteria.

3.2 Regression based approach
This approach was suggested by Das et al. (2013b)

and it is a generalization of Pourahmadi (1999), and Pan
and Mackenzie (2003). Suppose that a particular subject
is measured at T different time points. For the time being,
we suppress the subscript i. At time t, the residual for
the k-th response feature (k = 0,1) can be modeled in
terms of its predecessors, similar to the univariate case
in the following way:

(6)

where φt,t′   and Ψt,t′   are the corresponding regression
coefficients and ∈tk is the prediction error with mean 0
and variance . This model considers both the inter-
trait and intra-trait correlations over time. Denote

y = and ∈ = ,

where ∈k = (∈1k, ..., ∈Tk)
T ; k = 1,0. Then the matrix

representation of the above model becomes

(7)

where Φ and Ψ are both T × T lower triangular matrices
with 0s in the diagonal elements and in the (t, t′ )-th
position, φt,t′   and Ψt,t′  (t > t′  ) respectively. Thus, we
can write,
Ly = ∈, (8)

where , Following

Pourahmadi (1999), we assume that ∈tks are

uncorrelated and hence we get cov(∈) = E = ,

where both E1 and E0 are T × T diagonal matrices with

the t-th diagonal element  and , respectively.
Hence, we have,
cov(∈) = Lcov(y)LT = LΣLT = E. (9)
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Note that here  Σ = L–1E(L–1)T. Thus we have,

In a sparse irregular longitudinal setting, the subject-
specific covariance matrix will be modeled using
Ei = LiΣiLiT . Hence, for i-th subject, we have

.

Similar to the univariate case, we express the
unconstrained dependence parameters  log , log 
φt,t′   and Ψt,t′   as the following polynomial functions:

log  = λ0 + λ1t + λ2t2 + ... + λgtg, (10)

log = δ0 + δ1t + δ2t2 + ... + δgtg, (11)

φt,t′   = η0 + η1(t – t′ ) + η2(t – t′ )2 + ... + ηh(t – t′ )h,
(t′  = 1, 2, ...., t – 1), (12)
Ψt,t′   = θ0 + θ1(t – t′ ) + θ2(t – t′ )2 + ... + θh (t – t′ )h,
(t′  = 1, 2, ...., t – 1), (13)

Here, again, the covariance estimation is essentially
the estimation of the parameters λs, δs, ηs and θs. This
can be done in a likelihood based framework or in a
Bayesian approach using MCMC (Das et al., 2013b).
The optimal orders of the above polynomials g and h
are determined from the data using the information
criteria. Das and Daniels (2014) used a Bayesian
approach and obtained the optimal g and h as the
corresponding posterior modes.

4. Covariance Estimation for the grouped
longitudinal data

4.1 Univariate regular case
Gaskins and Daniels (2012) developed a non-

parametric Bayesian approach for the simultaneous
covariance estimation of the univariate longitudinal
responses coming from M related groups. Such data are
obtained from the meta-analyses where a certain
experiment is performed at different centres with

different sets of subjects over a period of time and the
results are noted. Note that since the nature of the
experiment is the same, the results obtained from the
different centres are likely to be related and this should
result in the similarity of the covariance features over
the centres. Let Yim be the T dimensional response vector
for the i-th subject belonging to the m-th group. The
m-th group consists of nm subjects and without loss of
generality, we assume that Yim ~ NT (0, Σm), where Σm
denotes the covariance matrix for the m-th group. Note
that traditionally for such data, we either assume the
homoscedasticity and assume the same covariance matrix
for all the groups. Alternatively, one can assume complete
heteroscedasticity and consider completely different Σm
for each group. However, Gaskins and Daniels (2012)
proposed the approach where Σm are modelled and
estimated simultaneously and the parameters related to
Σm are similar and/or same over time.

Similar to the Pourahmadi’s (1999) approach as
described in Section 2.2, The group-specific covariance
matrix Σm can be decomposed as the following :
Σm = Σ (Φm, Γm) and then from equation (3), we have,

 Note that Φm and
Γm respective denote the vector of the auto-regressive
parameters and the innovation variances. E is T × T
dimensional diagonal matrix and L is a lower triangular

matrix with Φm = (φm1, φm2, ... , φmj), where J = .

The key idea here is to propose a suitable prior
distribution of the auto-regressive parameters and the
innovation variances such that the groups share
information in terms of the covariance parameters. The
matrix stick-breaking process (MSBP) prior, developed
by Dunson et al. (2008) can handle such information
exchange across the groups. Gaskins and Daniels (2012)
proposed similar priors with proper modification for the
covariance parameters as the following.

Challenges in the Covariance Estimation of Longitudinal Data
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4.1.1 Prior for ΦΦΦΦΦ
The prior for Φ, referred to as the lag-block grouping

prior by Gaskins and Daniels (2012), is given as the
following:

Under this setting, the parameters φmj are drawn from
the random probability measures Fmj which are modelled
as the truncated MSBP, with a zero-inflated normal base
distribution. The mixing probabilities πmjh are split into
two components Umh and Xjh which allocate the j-th
parameter from the m-th group to the h-th cluster as a
property of MSBP (Dunson et al., 2008). Note that the
point masses in Fmj are drawn for all parameters j of the

same lag q(j). Hence Gaskins and Daniels called this as
lag block prior. The statistical properties of the above
prior structure are discussed in detail in Gaskins and
Daniels (2012).

4.1.2 Prior for ΓΓΓΓΓ
For the innovation variances, the following prior

distribution was proposed:

Here the base distribution is an exponential
distribution and the mean parameters are jointly
modelled in a correlated fashion, i.e. drawn from a T
variate normal density. Note that the parameters Ψ and
Ω  are scalers and R(ρ) is essentially AR(1).

Through extensive simulation studies, Gaskins and
Daniels (2012) have shown the empirical evidence for
the effectiveness of this approach compared to the
common covariance (homoscedasticity) and group-
specific covariance (complete heteroscedasticity)
structure. This approach is quite flexible and robust too.

4.2 Bivariate Irregular Case
The additional difficulty in the bivariate and/or

multivariate longitudinal data coming from multiple
related groups is the inter-response and the intra-response
dependence. Also when there is sparsity in the data, the
challenge is to model the subject-specific covariance
matrices. Das and Daniels (2014) proposed
semiparametric approach for handling such data.

We use the notations similar to Section 3.2. At time
t, the measurement for k-th response feature for a subject
in group m is modelled as the following,

(14)

where and  are autoregressive
coefficients and ∈tkm is the prediction error with mean

0 and variance . Let ym = be the

response vector of dimension 2T ×1 and

∈m = . The above equation then can be

expressed as:
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(15)

where Φmk and Ψmk are both T × T lower triangular
matrices with 0’s in the diagonal elements and 

and  (t > t′) in the (t, t′ )-th position respectively.
Thus we have,

LmYm = ∈m (16)

where . Assuming

that ∈tkm’s are uncorrelated, we obtain cov(∈m) =

 where and  are T × T

diagonal matrices with t-th diagonal element  and

, respectively. We have from equation (16),

cov(∈m) = Lmcov(ym) = LmΣm = Em (17)

The subject-specific covariance matrices will be
modelled using Eim = Lim Σim . The generalized
autoregressive parameters (φ(k)’s and Ψ(k)’s) and the
logarithm of the innovation (log and log ) are
modelled as polynomial functions as discussed in Section
3.2.

Note that we have 2(g+2h+3) covariance parameters
for each group. Even for moderate values of g, h and m,
this results in quite a large number of parameters to
estimate. As a result, the matrix stick breaking process
(Dunson et al., 2008) was used for the covariance
parameters λm, δm, , , and  to effectively
reduce the dimension.

(18)

(19)

(20)

(21)

(22)

(23)

4.2.1 Priors for , , , , , , , , , , and 

Similar to the univariate case, the MSBP prior was
proposed for the covariance parameters for sharing the
parameters across M groups. For j′ = 0, . . . , h, assume

where δχ is a point mass at χ. Define εη =  as an
(h + 1) × Nη(1) matrix of random atoms. In the above
truncated MSBP representation, the rows of εη

correspond to the parameters having base distribution

 and the columns correspond to the clusters. The

weights, are defined as

(24)

with and Beta (1, αη(1)) and

 Beta (1, βη(1)) . We take ; for all m

Challenges in the Covariance Estimation of Longitudinal Data
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and j′ to make  a valid probability measure. The
full matrix stick-breaking process corresponds to the
limiting case, Nη(1) = ∞. The current formulation is a
truncated version of that.

Das and Daniels (2014) proposed a zero-inflated
normal base distribution for as in Gaskins and
Daniels (2012),

where  is a binary random variable (for each j′)
taking value 1 only when each of the independent

Bernoulli random variables  take

value 1. Here, for each j′,  is 1 only when all the
lower lag coefficients are non-zero. This specification
implicitly allows the data to select the order of the
polynomials in (20) in an automated way such that a

(25)

non-zero higher order term cannot appear with zero lower
order terms and avoids the need for a two-step approach
of selecting the order and then fitting the model (Pan
and Mackenzie, 2003).

For  and , the same prior specification
is assumed.

4.2.2 Priors for λλλλλm and δδδδδm

We note that λm and δm are the parameters to model the
innovation variances. For λm, the proposed prior was:

Similar to the prior for the autoregressive parameters,
this prior will choose the order of the polynomial
functions from (18-19) and allow equality across groups.
Following the Bayesian tradition, an inverse gamma prior

was taken for . The same prior structure was
proposed for δm.

Through the extensive simulation studies, Das and
Daniels (2014) showed the superiority of the above
approach compared to the traditional homoscedasticity
and the complete heteroscedasticity approaches. Also
they analysed data from the Framingham Heart Study
(FHS) and compared the results from the above method
of the covariance estimation and the traditional
parametric models as discussed in Section 3.1.

5 Discussion
The complexity in the covariance estimation of the

longitudinal outcomes is not completely solved yet and
is a challenge even to the experts. The nature of the
complexity depends on the nature of the experiment and
the way the data was generated. In this article, we only
reviewed a few standard parametric and some advanced
non-parametric and semiparametric approaches of
handling this issue. However, this is still an ongoing
research topic and many flexible advanced methods are
being proposed every year.

For longitudinal study, a common issue is the
missingness. This occures due to death and/or withdrawal
of the subjects from the study for various reasons. The
missingness can be monotone in the sense that if a subject
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is missing at time t, then it will also be missing at time t′,
for all t′  > t. Monotone missingness is typically easier
to handle. In statistics, there is a rich literature on
modelling the missing values and imputing the missing
values under various restrictions. Longitudinal data with
the missing values should not be treated as the irregular
longitudinal data and hence a completely different
approach has to be made for handling such data. This is
indeed an interesting research area in our times. Some
discussions on this topic can be found in Daniels and
Hogan (2008).

Another level of challenge occur due to zero-inflation
in the longitudinal outcomes. This is a common scenario
in health economics, business and management. For such
data, typically the analysis is done by considering a
random effects model but estimation of the actual
covariance structure under this setting in not well
addressed yet in the literature. Of course, the complexity
will increase if we have multivariate zero-inflated
longitudinal data with missingness. And the difficulty
level can be further increased if the data come from
multiple related groups. Generalisation of the approaches
discussed in this article will not be a straight forward
extension and need a careful study. Potential researchers
can think of these issues based on real applications in
various disciplines.
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