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ABSTRACT
Although Reliability started during second World War, its mathematical development started during 1960s. Starting from the
genesis, here we explore different kinds of systems having practical applications viz. coherent system, in general, and series,
parallel and k-out-of-n systems, in particular. We shall also discuss different properties of path sets and cut sets and their use in
finding reliability of complex systems. We also discuss in brief different kinds of redundancies to enhance the reliability of a
given system.
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1.  Genesis
Theory of Reliability has its roots during World War II when Abraham Wald, as a member of the Statistical

Research Group, applied his knowledge of statistics to different problems faced during world war. To be more
specific, he used his knowledge of sampling inspection techniques and method of sequential analysis to study the
damage caused to the aircrafts and minimize losses of the aircrafts from enemy fire. Important advances in the
theory of reliability were made during 1950s. One important work in this direction is due to Epstein and Sobel
(1953) where estimates are obtained for the mean lifetime of the systems based on Type-II censored data drawn
from an exponential distribution. It is to be mentioned here that the data are said to be censored if units are removed
from consideration prior to their failure and the test is completed prior to all units’ failure. It is to be noted here that
the units may be removed, for example, when they fail because of other failure modes than the one being measured.
There are different kinds of censoring and their generalizations. However we want to discuss here very basic censoring
schemes. If all working units have the same lifetime, and the test is concluded before all units have failed, it is called
singly censored. When units are removed at various times the scheme is called multiply censored scheme (See
Fig. 1 for diagrammatic representation). A censoring scheme is called left censoring if the failure times for some
units are known to occur only before some specified time whereas it is called right censoring if the failure times for
some units are known only to be after some specified time. Let us take an example to make it more clear. Suppose a
person infected with HIV comes to a doctor and gets diagnosed to have AIDS. The time period between being
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 : failed
o : withdrawn from list

Fig. 1 : Different types of censoring
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diagnosed as AIDS patients and getting infected with HIV is generally called incubation period, which is not known.
When a person is diagnosed as having AIDS, the treatment starts there (we call it time zero). At this point we have
only information that the person got infected with HIV sometime before time zero (and no more information we
have). Data on these patients are called left-censored data. When a person getting treated regularly in a doctor’s
chamber, stops visiting the doctor, then we have the only information that the person was alive when he visited the
doctor last, and no information about him after that. The data on such patients are considered as right-censored data.

In order to study some systems, say electric bulbs, we may put n (a pre-fixed number) bulbs into test and wait
until all the bulbs fail in order to get their lives. However, this may not be feasible because the last bulb may fail after
thousands of hours. In order to avoid this difficulty, we may fix some time (say t0) after which the test will be
terminated. We shall have complete information on the lives of the bulbs which will fail before time t0 and the lives
of the rest of the bulbs are censored. This kind of censoring is called Type-I censoring or time censoring. Note that,
in this kind of censoring, the number of bulbs failed by time t0 is a random variable. We may also decide to stop the
experiment after r (a fixed number) bulbs fail. In this case, the time of running the experiment will be a random
variable. This kind of censoring is called Type-II censoring.

James Esary, Albert Marshall, Frank Proschan and Sam Saunders, the members of the Core Team of Boeing
Aircraft Company (a multinational corporation, founded byWilliam E. Boeing, that manufactures airplanes, rockets,
missiles etc.), did a good amount of work on reliability. However, although Richard Barlow, Z.W. Birnbaum and
Ingram Olkin were not in the core team, they contributed a lot in the development of reliability theory. They published
their work on the three primary sub-fields of Reliability, viz. (i) Structural Reliability where different kinds of design
of systems and how these designs influence the system lives are studied, (ii) Stochastic Reliability where we concentrate
on modeling the lifetime characteristics of systems and their performance, and (iii) Statistical Reliability where we
concentrate on the process of drawing inferences about general characteristics of systems from experimental data on
their performance. Couple of best works in this direction are due to Birnbaum et al. (1961, 1966), Proschan (1963)
and Barlow and Proschan (1965).

2. Some basic concepts
We start this section by giving the definition of reliability of a system.

Definition 2.1 Reliability is the probability that a system will perform its intended function satisfactorily for a
specified period of time under a given set of conditions.

In the above definition some terms are written in bold. These are some important points to remember while we
talk of reliability of a system. If X, having distribution function F and survival function R 1–F, denotes the lifetime
of a system, then the reliability of the system at time t is defined as the probability that the system has survived at
least for t units of time, i.e., reliability at time t, denoted by R(t), is defined as R(t) = P(X > t). In order to compare
performance of two systems we must prefix the required satisfaction level. Otherwise, the reliability comparison
will not be fair. Finally, before such comparison is made, two systems should be kept under same prior conditions in
order to have fair comparison.

Let N identical units (may be living organism or a system of components) be put to test at time 0 and let N_s(t)
be the number of surviving items at time t. Then N – N_s(t) = Nf (t) is the number of failed items by time t. Here, by
failed item we mean that the item may not actually fail, but the performance has gone below the prefixed satisfaction

level. The estimate of reliability R(t) is given by  and that of the distribution function is  .

Let f be the density function corresponding to F. Then the probability that an item which is known to survive at least
for t units of time will fail within the interval (t, t + t], for very small value of t, is given by

where   is known as the (instantaneous) failure rate (FR), which is sometimes called hazard rate. This
can be estimated by
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Let the items which are put to test will fail one at a time, and let the failure times be denoted by
t0 (= 0), t1, t2, . . . , tN, where the ith item has failed at time ti, i = 1, 2, . . . , N. Then we get the mean time to failure
(MTTF) as

This is pictorially described in Figure 2.

3.  Ageing classes
Ageing, an inherent property of a unit, is an important phenomenon in reliability theory. By ageing, we mean a

mathematical specification of degradation of item over time. It is a phenomenon which tells that an older system, in
some statistical sense, has a shorter remaining lifetime than a newer one. When we talk of ageing we generally mean
positive ageing whereas by negative ageing (sometimes called antiageing) we mean mathematical specification of
upgradation of an item over time. Clearly, negative ageing is a beneficial ageing. Some very common ageing classes
are described below.

Definition 3.1 A distribution is said to have (be)
(i) increasing failure rate (IFR) if (t) is increasing in t;
(ii) decreasing failure rate (DFR) if (t) is decreasing in t;
(iii) constant failure rate (CFR) if (t) is constant;
(iv) linear failure rate (LFR) if (t) = a + bt , where a and b are constants.

Fig. 2 : Mean time to failure
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Note that (t) = , a constant, if and only if MTTF = . Exponential distribution is characterized by constant

failure rate. One may wonder whether it is possible in practice to have any system whose lifetime distribution is
exponential. To answer this, let us consider the life of human being. At the time of birth the failure rate (of the life of
a new-born baby) is very high which comes down, in a very short period of time (say t1), to  (a constant) and
generally remains more or less constant, and then start to increase (say at time t2) in the old age. This kind of failure
rate is known as bathtub-shaped failure rate. We may formally define this as under.

Definition 3.2 A distribution is said to have bathtub (BT) shaped failure rate if there exist 0   t1  t2 such that
(t) (strictly) decreases in 0  t  t1, it is constant in t1  t  t2 and (strictly) increases in t  t2. Thus, for a
distribution having BT shaped failure rate, (t) will be of the form

where 1(t) decreases in [0, t1] and increases in [t2, ).
It is to be mentioned here that, as a particular case of BT shaped distribution, we get an IFR distribution when

t2 = 0, a DFR distribution for t1 ∞, and exponential distribution if t1 = 0 and t2 ∞. It is to be mentioned here that
BT distributions are neither closed under convolution nor closed under mixture nor closed under formation of
coherent system1.

However, if X has a BT shaped failure rate then, for any increasing function φ, φ(X) also has BT shaped failure
rate. Note that, in the BT shaped distribution, the lifetime during (t1, t2) can be considered to have more or less
constant failure rate (giving the distribution as exponential). Below we give some more cases where exponential
distribution can arise.

(a) If  FRs are determined by completely random independent events not associated with the age of the system,
an exponential distribution will result.

(b) Let a system be comprised of many components acting independently and let an individual component failure
causes system failure. In a renewal process where a failed component is immediately replaced by a new one,
the system, after sometime, will reach steady state, i.e., after sometime, a constant number of failures per unit
time will be observed.

(c) Let independent loads be applied on components of a (series) system (of n components) at a fixed interval of
time (δt), and let the probability of failure of a component due to the loads be p, a small constant. Then the
component reliability is given by R = 1 – p, and the system reliability at time t, Rn(t), can be computed as

which is the survival function of an exponential distribution with failure rate λ.
A linear failure rate distribution having failure rate λ(t) = a + bt, a  0, b > 0 is denoted by LFR(a, b), which is

IFR. This distribution has reliability

and density function is given by

1To be formally defined later

Different Aspects of Reliability



5RASHI 3 (2) : (2018)

It is to be noted that Rayleigh distribution, a very important distribution in reliability, is obtained as a particular
case of linear failure rate distribution (obtained when the constant a is zero). A LFR distribution is a skewed unimodal
distribution on [0,∞), and is closed under formation of series system (to be discussed later). It is to be noted that if
X ~ LFR(a, b) then the residual random variable, Xt = (X – tX > t), has the LFR(a + 2bt, b) distribution.

4.  Some special systems
Let X1, X2, . . . , Xn be the independent component lives of the system with Xi having reliability Ri(t) at time t.

Define, for i = 1, 2, . . . , n,

Let X be the lifetime of the system formed out of the components having lifetimes X1, X2, . . . , Xn.
Define   : {0, 1}n  {0, 1} as

Here  is called the structure function of the system. A system is said to be a coherent system if each of the
components is relevant (i.e., the system does not have any component which has no role to play with the working of
the system), and its structure function is increasing (in each argument keeping the others fixed).

The simplest coherent systems are the series and the parallel systems. A system is called a series system if it fails
whenever any one of the components fails. A system is called parallel system if it works as long as at least one of the
components works. Let a series system (having lifetime X) be formed out of n components having tifetimes X1, X2,
. . . , Xn. If the reliability of the ith component at time t is Ri(t) = P(Xi > t), then the reliability of the system at time t
is calculated as

If the component lives are iid (independent and identically distributed), with common reliability (at time t) of the
components p = R1(t), then the reliability of the system at time t is given by R(t) = pn. The reliability of the parallel
system constructed out of these Xis is given by

which becomes 1 – (1 – p)n if the component lives are iid with reliability p. Both the series and the parallel systems
are generalized to the k-out-of n system which is again a particular case of coherent system. A k-out-of-n : G System
(mostly known as k-out-of-n system) is a system which works as long as at least k of the n components work. The
reliability at time t of a k-out-of-n system constructed out of iid components having lifetimes X1, X2, . . . , Xn is
calculated as

(4.1)

Nanda
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Clearly, a series system is an n-out-of-n system whereas a parallel system is a 1-out-of-n system. From (4.1) we
note that R(t) is a polynomial in p. This is known as reliability polynomial. Sometimes we also define k-out-of-n :
F system. It is a system which fails with the failure of the kth component, i.e., the system works as long as the number
of failures is less than k, i.e., number of working components is more than n – k, i.e., the number of working
components is at least n – k + 1. Thus, k-out-of-n : F system is same as (n – k + 1)-out-of-n : G system. Below we give
some examples of k-out-of-n systems (cf. Balagurusamy, 1984).

(a) In an automobile with six cylinders it may be possible to drive the vehicle with four cylinders firing.
(b) A communication channel having three transmitters the message may be properly transmitted when at least

two transmitters properly work.
(c) An aircraft having four engines flies whenever at least two engines are in proper working conditions.
(d) A bridge supported by 10 cables may require only 6 cables to perform the maximum load.
It is not difficult to verify that the structure function of a series system is given by

that of parallel system is given by  whereas, for a k-out-of-n
system, it is

It is to be mentioned here that coherent system drastically restricts the number of possible functions mapping
from {0, 1}n to {0, 1}. To be more specific, out of the 256 functions mapping from {0, 1}3 to {0, 1}, only 5
correspond to coherent systems. However, it is surprising to note that in spite of this drastic reduction, the coherent
systems of order n grows rapidly with n. For example, there are only 2 coherent systems of order 2, 5 coherent
systems of order 3, 20 coherent systems of order 4, and more than a billion coherent systems of order 30. For more
discussion on this, one may refer to Samaniego (2007). In Table 1, we give structure functions of coherent systems
of different orders.
5. Path set and Cut set

A set of components P is said to be a path set if the system works whenever all the components in P work. A set,
no proper subset of which is a path set, is said to be a minimal path set (MPS). A set of components C is said to be
a cut set if the system fails whenever all the components in C fail. A cut set is a minimal cut set (MCS) if it has no
proper subset that is also a cut set.

Different Aspects of Reliability

Table 1 : Structure functions of coherent systems
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5.1 Properties of MPS and MCS
The following properties of MPS and MCS are important to be noted because these will be used to find out

reliability of complex systems.
(i) No MPS is a proper subset of any other.
(ii) The union of all MPSs is the set of all the components of the system.
(iii) No MCS is a proper subset of any other.
(iv) The union of all MCSs is the set of all the components of the system.
Note that it is possible to characterize all coherent systems of a given order n by these two properties of its MPS

(MCS). Since by (ii), every component from 1 to n is a member of at least one MPS, the relevance of every component
is guaranteed. If component k is not working and the system is also not working, then the system structure function
  will either remain equal to 0 or will increase to unity when component k is replaced by a working component.

Below we give structure function of different coherent systems. Computation of structure function for an arbitrary
coherent system can be algebraically cumbersome. However, there is a connection between the structure function of
a coherent system and its MPSs and MCSs which can be used to compute the structure function of a coherent system
on using the MPSs and MCSs. Note that

(i) a system works if and only if all the components of at least one MPS work;
(ii) a system works if and only if at least one of the components in every MCS work.

Let Pj be the MPS of a system, j = 1, 2, . . . , r. Define

Then

Further, let Cj be the MCS of a system, j = 1, 2, . . . , k. Define

Then

Let us consider the bridge system given in fig. 3. Since {1,4}, {1,3,5}, {2,5}, {2,3,4} are the MPSs and {1,2},
{4,5}, {1,3,5}, {2,3,4} are the MCSs for the bridge system, we have

Nanda
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From the MPSs and MCSs we construct structures which are equivalent to the bridge structure, as given in
fig. 4. The following important points may be noted.

(i) A coherent system is a parallel system in which each element is a series system in the components in the
MPS.

(ii) A coherent system is a series system in which each element is a parallel system in the components in the
MCS.

(iii) For a system i with structure function i, i = 1, 2, system 2 is better than system 1 if

(iv) Since no system is better than a parallel system and no system is worse than a series system, we have

For a coherent system A we define its dual as another coherent system B if the MPSs of one are the MCSs of the
other. Thus, A(x) = 1– B(1– x). From table 1, we see that a series system is dual of a parallel system of same number
of components whereas a 2-out-of-3 system is dual of itself.

6. Component redundancy vs. system redundancy
Suppose we have an n-component system with component lives X1, X2, . . . ,Xn and m additional components

(known as redundant components) having lifetimes Y1, Y2, . . . , Ym (m  n) are available to enhance the performance
of the system by incorporating redundancy in it. Let the reliability of a system be enhanced in either of the following
two different ways.

(i) Each component of the system may have one or more parallel components. This kind of redundancy is
called Component Redundancy.

(ii) The entire system may be placed in parallel with one or more identical systems. This kind of redundancy is
called System Redundancy.

Fig. 3 : Bridge system

(in terms of MPS)

(in terms of MCS)

Fig. 4 : Equivalent bridge structures

Different Aspects of Reliability
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Let us take m = n. Further, let xi be the realization of Xi and yi be that of Yi. Note that, if each xi and yi takes values
from {0,1}, then we have 1 – (1 – xi)(1 – yi)  min{xi, yi}, which gives

where x = (x1, x2, . . . , xn) and y = (y1, y1, . . . , yn). This means that component redundancy is superior to system
redundancy. In order to compute the reliability of a coherent system, write pi = P(Xi = 1) and p = (p1, p2, . . . , pn).
Then the system reliability is given by

which is a multilinear function (i.e., linear in every pi). Thus, by replacing xi by pi in the structure function we get the
survival function. By adopting this technique, the survival function of the bridge system (as discussed earlier)
constructed out of iid components, is obtained as

There are other kinds of redundancy as well. When the original component and the redundant component work
together so that the life of the system is the maximum of the original component life and the redundant component
life, the redundancy is called Active Redundancy (or Hot Standby), whereas if the redundant component starts
working once the original component fails so that the system life is the convolution of the original component life
and the redundant component life, the redundancy is called Standby Redundancy (or Cold Standby). Sometimes, the
cold standby takes time to start working once the original component fails. The time between failure of the original
component and the time when the redundant component starts working is known as lead time. Sometimes we cannot
allow any positive lead time. For example, in case of shadowless lamp used in case of surgery, the ‘censoring and
switching device’ is not allowed to take any positive lead time. In this case the redundant components are used
neither in the active state nor in the cold state. Here the redundant component is allowed to work in a state where its
failure rate is non-zero but less that the failure rate of its active state. This kind of redundancy is called warm
redundancy or warm standby. There is a vast literature on redundancy. However, some important works in this
direction are due to Gordon (1957), Singh and Singh (1997), Misra et al. (2009), Hazra and Nanda (2014, 2015),
Zhao et al. (2015) to mention a few.

7.  Conclusion
In this note a brief overview of reliability theory covering different aspects of it has been given so that those who

are new in the field of reliability can get some idea to start working on this field.
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